Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T10:40:07.775Z Has data issue: false hasContentIssue false

Transient flow of a viscous incompressible fluid in a circular tube after a sudden point impulse

Published online by Cambridge University Press:  18 September 2009

B. U. FELDERHOF*
Affiliation:
Institut für Theoretische Physik A, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
*
Email address for correspondence: ufelder@physik.rwth-aachen.de

Abstract

The flow of a viscous incompressible fluid in a circular tube generated by a sudden impulse on the axis is studied on the basis of the linearized Navier–Stokes equations. A no-slip boundary condition is assumed to hold on the wall of the tube. At short time the flow is irrotational and may be described by a potential which varies with the square root of time. At later times there is a sequence of moving and decaying vortex rings. At long times the flow velocity decays with an algebraic long-time tail. The impulse generates a time-dependent pressure difference between the ends of the tube.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Acheson, D. J. 1990 Elementary Fluid Dynamics. Clarendon.CrossRefGoogle Scholar
Blake, J. R. 1979 On the generation of viscous toroidal eddies in a cylinder. J. Fluid Mech. 95, 209.CrossRefGoogle Scholar
Bocquet, L. & Barrat, J.-L. 1996 Hydrodynamic properties of confined fluids. J. Phys. C 8, 9297.Google Scholar
Brenner, H. 1970 Pressure drop due to the motion of neutrally buoyant particles in duct flows. J. Fluid Mech. 43, 641.CrossRefGoogle Scholar
Cui, B., Diamant, H. & Lin, B. 2002 Screened hydrodynamic interaction in a narrow channel. Phys. Rev. Lett. 89, 188302-1.CrossRefGoogle Scholar
Faxén, H. 1959 About T. Bohlin's paper: on the drag on rigid spheres, moving in a viscous liquid inside cylindrical tubes. Kolloid. Z. 167, 146.CrossRefGoogle Scholar
Felderhof, B. U. 2005 Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion. J. Phys. Chem. 109, 21406.CrossRefGoogle ScholarPubMed
Felderhof, B. U. 2006 Diffusion and velocity relaxation of a Brownian particle immersed in a viscous compressible fluid confined between two parallel plane walls. J. Chem. Phys. 124, 054111.CrossRefGoogle Scholar
Felderhof, B. U. 2008 Transient inertial hydrodynamic interaction between two identical spheres settling at small Reynolds number. J. Fluid Mech. 605, 263.CrossRefGoogle Scholar
Felderhof, B. U. 2009 Flow of a viscous incompressible fluid after a sudden point impulse near a wall. J. Fluid Mech. 629, 425.CrossRefGoogle Scholar
Friedmann, M., Gillis, J. & Liron, N. 1968 Laminar flow in a pipe at low and moderate Reynolds numbers. Appl. Sci. Res. 19, 426.CrossRefGoogle Scholar
Hagen, M. H. J., Pagonabarraga, I., Lowe, C. P. & Frenkel, D. 1997 Algebraic decay of velocity fluctuations in a confined fluid. Phys. Rev. Lett. 78, 3785.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff.Google Scholar
Hasimoto, H. 1976 Slow motion of a small sphere in a cylindrical domain. J. Phys. Soc. Japan 41, 2143.CrossRefGoogle Scholar
Jeney, S., Lukić, B., Kraus, J. A., Franosch, T. & Forró, L. 2008 Anisotropic memory effects in confined colloidal diffusion. Phys. Rev. Lett. 100, 240604.CrossRefGoogle ScholarPubMed
Liron, N. & Shahar, R. 1978 Stokes flow due to a Stokeslet in a pipe. J. Fluid Mech. 78, 727.CrossRefGoogle Scholar
Pagonabarraga, I., Hagen, M. H. J., Lowe, C. P. & Frenkel, D. 1999 Short-time dynamics of colloidal suspensions in confined geometries. Phys. Rev. E 59, 4458.CrossRefGoogle Scholar
Pozrikidis, C. 2005 Computation of Stokes flow due to the motion or presence of a particle in a tube. J. Engng Math. 53, 1.CrossRefGoogle Scholar
Smith, S. H. 1994 The decay of slow viscous flow. J. Engng Math. 28, 327.CrossRefGoogle Scholar