Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T03:58:49.030Z Has data issue: false hasContentIssue false

Transonic equivalence rule: a nonlinear problem involving lift

Published online by Cambridge University Press:  29 March 2006

H. K. Cheng
Affiliation:
University of Southern California, Los Angeles, California 90007
M. M. Hafez
Affiliation:
University of Southern California, Los Angeles, California 90007

Abstract

The inviscid transonic flow past a thin wing having swept leading edges, with smooth lift and thickness distributions, is shown to possess an outer nonlinear structure determined principally by a line source and a line doublet. Three domains (the thickness-dominated, the intermediate, and the lift-dominated), representing different degrees of lift control of the outer flow, are identified; a transonic equivalence rule valid in all three domains is established. Except in one domain, departure from the Whitcomb-Oswatitsch area rule is significant; the equivalent body corresponding to the source effect has an increased cross-sectional area depending nonlinearly on the lift. This nonlinear lift contribution results from the second-order corrections to the inner (Jones) solution, but produces effects of first-order importance in the outer flow. Of interest is an afterbody effect dependent on the vortex drag, which is not accounted for by the classical transonic small-disturbance theory.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. C. & Sears, W. R. 1953 J. Aero. Sci. 20, 8598.
Ashley, H. & Landahl, M. 1965 Aerodynamics and Wings and Bodies. Addison-Wesley.
Bailey, F. R. & Steger, J. L. 1973 A.I.A.A. J. 11, 318325.
Barnwell, R. W. 1973 A.I.A.A. J. 11, 764766.
Batchelor, G. K. 1967 An Introduction to Fluid Mechanics. Cambridge University Press.
Bauer, F., Garabedian, P. R., Korn, D. G. & Jameson, A. 1974 Super-Critical Wing Sections, vol. 2. Springer.
Bekndt, S. B. 1952 Royal Tech. Inst. Stockholm KTH Aero Tech. Note, no. 14. (See also 1958 Z. angew. Math-Phys. B9.)
Berndt, S. B. 1955 Z. angew. Math. Phys. 35.
Berndt, S. B. 1956 Aero. Res. Inst. Sweden Stockholm FFA Rep. no. 70.
Broderick, J. B. 1949 Quart. J. Mech. Appl. Math. 2, 98120.
Cheng, H. K. & Hafez, M. M. 1972a Univ. of South Calif. Los Angeles, Dept. Aerospace Engng Rep. no. 121.
Cheng, H. K. & Hafez, M. M. 1972b A.I.A.A. J. 10, 11151117.
Cheng, H. K. & Hafez, M. M. 1973a Univ. of South. Calif. Los Angeles, Dept. Aerospace Engng Rep. no. 124.
Cheng, H. K. & Hafez, M. M. 1973b A.I.A.A. J. 11, 12101212.
Cole, J. D. 1969 Boeing Sci. Res. Lab. Doc. DI-82-0878.
Cole, J. D. & Messiter, A. F. 1957 Z. angew. Math. Phys. 8, 125.
Drougge, G. 1959 Aero. Res. Inst. Sweden, Stockholm FFA Rep. no. 83. (Appendix S. B. Berndt & O. A. Hilding.)
Euvrard, D. 1968 J. Mécan. 7, 97139.
Ferrari, C. & Tricomi, F. G. 1968 Transonic Aerodynamics (trans. R. A. Cramer). Academic.
Garabedian, P. R. & Korn, D. G. 1971 Comm. Pure Appl. Math. 24, 841851.
Guderley, K. G. 1962 The Theory of Transonic Flow. Pergamon.
Hayes, W. D. 1954 J. Aero. Sci. 21, 721730.
Hayes, W. D. 1966 J. Mécan. 5, 163206.
Hayes, W. D. 1971 Ann. Rev. Fluid Mech. 3, 269290.
Hedman, S. & Berndt, S. B. 1973 Aero. Res. Inst. Sweden Stockholm FFA Rep. AE-1028.
Jones, R. T. 1946 N.A.C.A. Rep. no. 835.
Jones, R. T. 1971 A.I.A.A. J. 10, 272276.
Lagerstrom, P. A. & Casten, R. G. 1972 SIAM Rev. 14, 63120.
Lighthill, M. J. 1954 General Theory of High Speed Aerodynamics(ed. W. R. Sears), pp. 345387. Princeton University Press.
Lock, R. C. 1964 Symposium Transsonicum, pp. 276287. Springer.
Messiter, A. F. 1957 U.S.A.F. O.S.R. Tech. Note, no. 57–626.
Miles, J. W. 1959 Potential Theory of Unsteady Supersonic Flow. Cambridge University Press.
Munk, M. M. 1924 N.A.C.A. Rep. no. 184.
Murman, E. M. & Cole, J. D. 1971 A.I.A.A. J. 9, 114121.
Newman, P. A. & Klunker, E. B. 1972 A.I.A.A. J. 10, 917973.
Nieuwland, G. Y. & Spee, B. M. 1973 Ann. Rev. Fluid Mech. 5, 119150.
Oswatitsch, K. 1952 Proc. 8th Inst. Cong. Theoretical Appl. Mech. Istanbul.
Oswatistch, K. 1957 Appl. Mech. Rev. 10, 543545.
Oswatitsch, K. & Keune, F. 1954 Z. Flügwiss. 3, 2946. (Trans. 1955 RAE Libr. no. 545.)
Ryzhov, O. J. 1965 Prikl. Mat. Mekh. 29, 10041014.
Sears, W. R. 1974 A.I.A.A. J. Aircraft, 11, 191192.
Seebass, R. 1969 A.I.A.A. J. Aircraft, 6, 177184.
Spreiter, J. R. & Alksne, 1971 N.A.S.A. Rep. no. 1359.
Spreiter, J. R. & Stahara, S. S. 1971 A.I.A.A. J. 9, 17841791.
Szaniawski, R. 1968 Acta Mechanica, 5, 189203.
Van Dyke, M. D. 1951 J. Aero. Sci. 18, 161.
Van Dyke, M. D. 1964 Perturbation Methods in Fluid Mechanics. Academic.
Ward, N. G. 1949 Quart. J. Mech. Appl. Math. 11, 7597.
Whitcomb, R. T. 1952 N.A.C.A. Res. Memo. L52H08. (Superseded 1956 N.A.C.A. Rep. no. 1273.)
Whitham, G. G. 1956 J. Fluid Mech. 1, 290318.