Published online by Cambridge University Press: 28 March 2006
The behaviour of cylinders of fluid injected vertically downwards into a similar stationary fluid has been observed with particular reference to the effect of a stable density stratification in the stationary fluid upon the penetration and upon the mixing between the injected and ambient fluids.
When the ambient fluid is of uniform density, it is found that the motion is approximately self-preserving, and that the energy decay rate per unit mass of moving fluid follows the same law as does the decay rate in a turbulent fluid.
The observations demonstrate that the effect of the density stratification in the ambient fluid is principally upon the gross motion and only slightly upon the smaller scales of motion.
Estimates are given of the maximum conversion of kinetic energy to potential energy, and of the ultimate loss of energy to buoyancy, as a function of a Richardson number determined from the initial conditions of volume, velocity, density gradient, density, and the acceleration of gravity.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.