Published online by Cambridge University Press: 21 April 2006
A turbulent spot is induced by a spark triggered in one of the laminar boundary layers in the entrance region of a two-dimensional duct flow. The development of the spot is studied using ensemble-averaged velocity and wall shear stress in the plane of symmetry of the spot. Following an initial growth of the spot, the potential-flow field associated with this spot triggers a second spot on the opposite wall of the duct. This new spot propagates at the same convection velocity as the original spot and grows until the turbulent regions occupied by the two spots completely fill the width of the duct. This transition mechanism differs significantly from that observed for a plane Poiseuille flow, where the spot fills the duct almost immediately after it is generated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.