Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T06:29:46.184Z Has data issue: false hasContentIssue false

Uniform electric-field-induced lateral migration of a sedimenting drop

Published online by Cambridge University Press:  03 March 2016

Aditya Bandopadhyay
Affiliation:
Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Shubhadeep Mandal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
N. K. Kishore
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Suman Chakraborty*
Affiliation:
Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
*
Email address for correspondence: suman@mech.iitkgp.ernet.in

Abstract

We investigate the motion of a sedimenting drop in the presence of an electric field in an arbitrary direction, otherwise uniform, in the limit of small interface deformation and low-surface-charge convection. We analytically solve the electric potential in and around the leaky dielectric drop, and solve for the Stokesian velocity and pressure fields. We obtain the correction in drop velocity due to shape deformation and surface-charge convection considering small capillary number and small electric Reynolds number which signifies the importance of charge convection at the drop surface. We show that tilt angle, which quantifies the angle of inclination of the applied electric field with respect to the direction of gravity, has a significant effect on the magnitude and direction of the drop velocity. When the electric field is tilted with respect to the direction of gravity, we obtain a non-intuitive lateral motion of the drop in addition to the buoyancy-driven sedimentation. Both the charge convection and shape deformation yield this lateral migration of the drop. Our analysis indicates that depending on the magnitude of the tilt angle, conductivity and permittivity ratios, the direction of the sedimenting drop can be controlled effectively. Our experimental investigation further confirms the presence of lateral migration of the drop in the presence of a tilted electric field, which is in support of the essential findings from the analytical formalism.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajayi, O. O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc. R. Soc. Lond. A 364, 499507.Google Scholar
Bhagat, A. A. S., Bow, H., Hou, H. W., Tan, S. J., Han, J. & Lim, C. T. 2010 Microfluidics for cell separation. Med. Biol. Engng Comput. 48 (10), 9991014.Google Scholar
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Particle motions in sheared suspensions. Rheol. Acta 4 (1), 6472.Google Scholar
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (01), 131170.Google Scholar
Chen, X., Xue, C., Zhang, L., Hu, G., Jiang, X. & Sun, J. 2014 Inertial migration of deformable droplets in a microchannel. Phys. Fluids 26 (11), 112003.Google Scholar
Chen, Y.-L. 2014 Inertia- and deformation-driven migration of a soft particle in confined shear and Poiseuille flow. RSC Adv. 4 (34), 1790817916.Google Scholar
Deshmukh, S. D. & Thaokar, R. M. 2013 Deformation and breakup of a leaky dielectric drop in a quadrupole electric field. J. Fluid Mech. 731, 713733.Google Scholar
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104 (48), 1889218897.Google Scholar
Feng, J. Q. 1996 Dielectrophoresis of a deformable fluid particle in a nonuniform electric field. Phys. Rev. E 54 (4), 44384441.Google Scholar
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455 (1986), 22452269.Google Scholar
Feng, J. Q. & Scott, T. C. 2006 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289326.CrossRefGoogle Scholar
Geislinger, T. M. & Franke, T. 2013 Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift. Biomicrofluidics 7 (4), 44120.Google Scholar
Goldsmith, H. & Mason, S. 1962 The flow of suspensions through tubes. I. Single spheres, rods, and discs. J. Colloid Sci. 17 (5), 448476.CrossRefGoogle Scholar
Haber, S. & Hetsroni, G. 1972 Hydrodynamics of a drop submerged in an unbounded arbitrary velocity field in the presence of surfactants. Appl. Sci. Res. 25 (1), 215233.Google Scholar
Hanna, J. A. & Vlahovska, P. M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.Google Scholar
Happel, J. & Brenner, H. 1981 Low Reynolds Number Hydrodynamics. Springer.Google Scholar
He, H., Salipante, P. F. & Vlahovska, P. M. 2013 Electrorotation of a viscous droplet in a uniform direct current electric field. Phys. Fluids 25 (3), 032106.Google Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (02), 365400.Google Scholar
Im, D. J. & Kang, I. S. 2003 Electrohydrodynamics of a drop under nonaxisymmetric electric fields. J. Colloid Interface Sci. 266 (1), 127140.CrossRefGoogle ScholarPubMed
Karnis, A. & Mason, S. 1967 Particle motions in sheared suspensions. J. Colloid Interface Sci. 24 (2), 164169.Google Scholar
Kim, S. & Karrila, S. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.Google Scholar
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2013 The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25 (11), 112101.Google Scholar
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.CrossRefGoogle Scholar
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.CrossRefGoogle Scholar
Lee, S. M., Im, D. J. & Kang, I. S. 2000 Circulating flows inside a drop under time-periodic nonuniform electric fields. Phys. Fluids 12 (8), 18991910.Google Scholar
Mahlmann, S. & Papageorgiou, D. 2009 Numerical study of electric field effects on the deformation of two-dimensional liquid drops in simple shear flow at arbitrary Reynolds number. J. Fluid Mech. 626, 367393.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2015 Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E 92 (2), 023002.Google Scholar
Masliyah, J. H. & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. Wiley.Google Scholar
Mcgrath, J., Jimenez, M. & Bridle, H. 2014 Deterministic lateral displacement for particle separation: a review. Lab on a Chip 14 (21), 41394158.CrossRefGoogle ScholarPubMed
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.Google Scholar
Mortazavi, S. & Tryggvason, G. 2000 A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop. J. Fluid Mech. 411, 325350.Google Scholar
Mukherjee, S. & Sarkar, K. 2013 Effects of matrix viscoelasticity on the lateral migration of a deformable drop in a wall-bounded shear. J. Fluid Mech. 727, 318345.CrossRefGoogle Scholar
Mukherjee, S. & Sarkar, K. 2014 Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall. Phys. Fluids 26 (10), 103102.Google Scholar
Pak, O. S., Feng, J. & Stone, H. A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.Google Scholar
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22 (11), 112110.Google Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.CrossRefGoogle Scholar
Schwalbe, J. T., Phelan, F. R. Jr, Vlahovska, P. M. & Hudson, S. D. 2011 Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matt. 7 (17), 77977804.Google Scholar
Stan, C. A., Guglielmini, L., Ellerbee, A. K., Caviezel, D., Stone, H. A. & Whitesides, G. M. 2011 Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E 84 (3), 036302.Google Scholar
Supeene, G., Koch, C. R. & Bhattacharjee, S. 2008 Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318 (2), 463476.Google Scholar
Taylor, G. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291 (1425), 159166.Google Scholar
Thaokar, R. M. 2012 Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric AC electric field. Eur. Phys. J. E 35 (8), 115.Google Scholar
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and burst of liquid drops. Phil. Trans. R. Soc. Lond. A 269 (1198), 295319.Google Scholar
Velev, O. D. & Bhatt, K. H. 2006 On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matt. 2 (9), 738750.Google Scholar
Velev, O. D., Prevo, B. G. & Bhatt, K. H. 2003 On-chip manipulation of free droplets. Nature 426 (6966), 515516.Google Scholar
Vizika, O. & Saville, D. A. 2006 The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239, 121.Google Scholar
Vlahovska, P. M. 2011 On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670, 481503.Google Scholar
Ward, T. & Homsy, G. M. 2001 Electrohydrodynamically driven chaotic mixing in a translating drop. Phys. Fluids 13 (12), 35213525.Google Scholar
Ward, T. & Homsy, G. M. 2003 Electrohydrodynamically driven chaotic mixing in a translating drop. II. Experiments. Phys. Fluids 15 (10), 29872994.CrossRefGoogle Scholar
Ward, T. & Homsy, G. M. 2006 Chaotic streamlines in a translating drop with a uniform electric field. J. Fluid Mech. 547, 215230.CrossRefGoogle Scholar
Wohl, P. R. & Rubinow, S. I. 1974 The transverse force on a drop in an unbounded parabolic flow. J. Fluid Mech. 62 (01), 185207.Google Scholar
Xu, X. 2007 Electrohydrodynamic Flow and Chaotic Mixing Inside Drops. University of California.Google Scholar
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395414.Google Scholar
Zeng, J. & Korsmeyer, T. 2004 Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 4 (4), 265277.Google Scholar
Zhang, J., Zahn, J. & Lin, H. 2013 Transient solution for droplet deformation under electric fields. Phys. Rev. E 87 (4), 043008.Google Scholar
Supplementary material: File

Bandopadhyay supplementary material

Bandopadhyay supplementary material

Download Bandopadhyay supplementary material(File)
File 116.2 KB