Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T06:58:46.215Z Has data issue: false hasContentIssue false

Universality of sea wave growth and its physical roots

Published online by Cambridge University Press:  07 September 2015

Vladimir E. Zakharov
Affiliation:
University of Arizona, Tuscon, AZ, USA Laboratory of Nonlinear Wave Processes, Novosibirsk State University, Russia P.N. Lebedev Physical Institute of Russian Academy of Sciences, Russia
Sergei I. Badulin*
Affiliation:
Laboratory of Nonlinear Wave Processes, Novosibirsk State University, Russia P.P. Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
Paul A. Hwang
Affiliation:
Remote Sensing Division, Naval Research Laboratory, Washington, DC, USA
Guillemette Caulliez
Affiliation:
Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, CEDEX 09, France
*
Email address for correspondence: badulin@ioran.ru

Abstract

Assuming resonant nonlinear wave interactions to be the dominant physical mechanism of growing wind-driven seas we propose a concise relationship between instantaneous wave steepness and time or fetch of wave development expressed in dimensionless wave periods or lengths. This asymptotic physical law derived from the first principles of the theory of weak turbulence does not contain wind speed explicitly. The validity of this law is illustrated by results of numerical simulations, in situ measurements of growing wind seas and wind-wave tank observations. The impact of this new view of sea-wave physics is discussed in the context of conventional approaches to wave modelling and forecasting.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babanin, A. N. & Soloviev, Yu. P. 1998 Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr. 28, 563576.Google Scholar
Badulin, S. I.2010 ABC of wind wave growth. In 17th Conference Waves in Shallow Water Environment, Brest, France, http://wave.ocean.ru/badulin/ABC_WISE2010.ppt.Google Scholar
Badulin, S. I., Babanin, A. V., Resio, D. & Zakharov, V. 2007a Weakly turbulent laws of wind–wave growth. J. Fluid Mech. 591, 339378.Google Scholar
Badulin, S. I., Babanin, A. V., Resio, D. & Zakharov, V. E. 2007b On experimental justification of weakly turbulent nature of growing wind seas. In 10th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazard Symposium, http://www.waveworkshop.org/10thWaves/ProgramFrameset.htm.Google Scholar
Badulin, S. I., Babanin, A. V., Resio, D. & Zakharov, V. 2008 Numerical verification of weakly turbulent law of wind wave growth. In IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence. Proceedings of the IUTAM Symposium held in Moscow, 25–30 August, 2006 (ed. Borisov, A. V., Kozlov, V. V., Mamaev, I. S. & Sokolovskiy, M. A.), IUTAM Bookseries, vol. 6, pp. 175190. Springer.Google Scholar
Badulin, S. I. & Caulliez, G. 2009 Significance of laboratory observations for modeling wind-driven seas. Geophys. Res. Abstracts 11, EGU2009–12694.Google Scholar
Badulin, S. I. & Grigorieva, V. G. 2012 On discriminating swell and wind-driven seas in voluntary observing ship data. J. Geophys. Res. 117, C00J29; doi:10.1029/2012JC007937.Google Scholar
Badulin, S. I., Pushkarev, A. N., Resio, D. & Zakharov, V. E. 2002 Direct and inverse cascade of energy, momentum and wave action in wind-driven sea. In 7th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazards Symposium, pp. 92103. www.waveworkshop.org.Google Scholar
Badulin, S. I., Pushkarev, A. N., Resio, D. & Zakharov, V. E. 2005 Self-similarity of wind-driven seas. Nonlinear Process. Geophys. 12, 891946.Google Scholar
Bretschneider, C. L. 1952a The generation and decay of wind waves in deep water. Trans. Am. Geophys. Union 33, 381389.Google Scholar
Bretschneider, C. L. 1952b Revised wave forecasting relationship. In Proceedings of the 2nd Conference Coastal Engineering, ASCE, Council on Wave Research.Google Scholar
Burling, R. W. 1959 The spectrum of waves at short fetches. Dtsch. Hydrogr. Z. 12, 96117.Google Scholar
Carter, D. J. T. 1982 Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engng 9 (1), 1733.Google Scholar
Caulliez, G. 2013 Dissipation regimes for short wind waves. J. Geophys. Res. Oceans 118, 672684.Google Scholar
Caulliez, G., Makin, V. & Kudryavtsev, V. 2008 Drag of the water surface at very short fetches: Observations and modeling. J. Phys. Oceanogr. 38, 20382055.Google Scholar
Darbyshire, J. 1959 Further investigation of wind generated waves. Dtsch. Hydrogr. Z. 12, 113.Google Scholar
DeLeonibus, P. S. & Simpson, L. S. 1972 Case study of duration-limited wave spectra observed at an open ocean tower. J. Geophys. Res. 77, 45554569.Google Scholar
Dobson, F., Perrie, W. & Toulany, B. 1989 On the deep water fetch laws for wind-generated surface gravity waves. Atmos. Ocean 27, 210236.Google Scholar
Donelan, M. A. 1979 Marine forecasting. In On the Fraction of Wind Momentum Retained by Waves, pp. 141159. Elsevier.Google Scholar
Dudis, J. J. 1981 Interpretation of phase velocity measurements of wind-generated surface waves. J. Fluid Mech. 113, 241249.Google Scholar
Gagnaire-Renou, E.2009, Amélioration de la modélisation spectrale des états de mer par un calcul quasi-exact des interactions non-linéaires vague-vague. Thèse pour l’obtention du grade de docteur, Université du Sud Toulon Var, Ecole Doctorale Sciences Fondamentales et Appliquées.Google Scholar
Gagnaire-Renou, E., Benoit, M. & Badulin, S. I. 2011 On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech. 669, 178213.Google Scholar
Garciá-Nava, H., Ocampo-Torres, F. J., Osuna, P. & Donelan, M. A. 2009 Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res. 114, C12008; doi:10.1029/2009JC005389.Google Scholar
Gelci, R., Cazalé, H. & Vassal, J. 1957 Prévision de la houle. La méthode des densités spectroangulaires. Bull. Comité Océanogr. Etude Côtes 9, 416435.Google Scholar
Glazman, R. 1994 Surface gravity waves at equilibrium with a steady wind. J. Geophys. Res. 99 (C3), 52495262.Google Scholar
Hasselmann, K. 1962 On the nonlinear energy transfer in a gravity wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.Google Scholar
Hasselmann, K. 1963a On the nonlinear energy transfer in a gravity wave spectrum. Part 2. Conservation theorems; wave-particle analogy; irreversibility. J. Fluid Mech. 15, 273281.CrossRefGoogle Scholar
Hasselmann, K. 1963b On the nonlinear energy transfer in a gravity wave spectrum. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. Part 3. J. Fluid Mech. 15, 385398.Google Scholar
Hasselmann, K. 1974 On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorol. 6, 107127.CrossRefGoogle Scholar
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W. & Walden, H. 1973 Measurements of wind–wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. 12, (A8).Google Scholar
Hasselmann, K., Ross, D. B., Müller, P. & Sell, W. 1976 A parametric wave prediction model. J. Phys. Oceanogr. 6, 200228.Google Scholar
Hwang, P. A. 2006 Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res. 111, C02005; doi:10.1029/2005JC003180.Google Scholar
Hwang, P. A., Garciá-Nava, H. & Ocampo-Torres, F. J. 2011 Observations of wind wave development in mixed seas and unsteady wind forcing. J. Phys. Oceanogr. 41 (12), 23432362.Google Scholar
Hwang, P. A. & Sletten, M. A. 2008 Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res. 113, C02012. (2009 Corrigendum 113, C02015; doi:10.1029/2008JC005244).Google Scholar
Hwang, P. A. & Wang, D. W. 2004 Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr. 34, 23162326.Google Scholar
Kahma, K. K. & Calkoen, C. J. 1992 Reconciling discreapancies in the observed growth of wind-generated waves. J. Phys. Oceanogr. 22, 13891405.Google Scholar
Kahma, K. K. & Calkoen, C. J. 1994 Growth curve observations. In Dynamics and Modeling of Ocean Waves (ed. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M.), pp. 74182. Cambridge University Press.Google Scholar
Katz, A. V. & Kontorovich, V. M. 1971 Drift stationary solutions in the weak turbulence theory. JETP Lett. 14, 265267.Google Scholar
Katz, A. V. & Kontorovich, V. M. 1974 Anisotropic turbulent distributions for waves with a non-decay dispersion law. Sov. Phys. JETP 38, 102107.Google Scholar
Katz, A. V., Kontorovich, V. M., Moiseev, S. S. & Novikov, V. E. 1975 Power-like solutions of the kinetic Boltzmann equation for distributions of particles with spectral fluxes. JETP Lett. 21, 56.Google Scholar
Kawai, S. 1979 Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech. 93, 661703.CrossRefGoogle Scholar
Kitaigorodskii, S. A. 1962 Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process. Bull. Acad. Sci. USSR Ser. Geophys. N1, 105117; Engl. Transl.Google Scholar
Komatsu, K. & Masuda, A. 1996 A new scheme of nonlinear energy transfer among wind waves: RIAM method. Algorithm and perfomance. J. Oceanogr. Soc. Japan 52, 509537.Google Scholar
Komen, G. J., Hasselmann, S. & Hasselmann, K. 1984 On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 12711285.Google Scholar
Korotkevich, A. O., Pushkarev, A. N., Resio, D. & Zakharov, V. E. 2008 Numerical verification of the weak turbulent model for swell evolution. Eur. J. Mech. (B/Fluids) 27, 361387; doi:10.1016/j.euromechflu.2007.08.004.Google Scholar
Lavrenov, I. V. 2003a A numerical study of a non-stationary solution of the Hasselmann equation. J. Phys. Oceanogr. 33 (3), 499511.Google Scholar
Lavrenov, I. V. 2003b Wind Waves in Ocean. Physics and Numerical Simulation. Springer.Google Scholar
Lavrenov, I., Resio, D. & Zakharov, V. 2002 Numerical simulation of weak turbulent Kolmogorov spectrum in water surface waves. In 7th International Workshop on Wave Hindcasting and Forecasting, pp. 104116. Banff.Google Scholar
Liu, P. C. 1985 Testing parametric correlations for wind waves in the Great Lakes. J. Great Lakes Res. 11, 478491.Google Scholar
Merzi, N. & Graf, W. H. 1985 Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys. 3, 473478.Google Scholar
Pierson, W. J. & Moskowitz, L. A. 1964 A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodsii. J. Geophys. Res. 69, 51815190.Google Scholar
Pushkarev, A. N., Resio, D. & Zakharov, V. E. 2003 Weak turbulent theory of the wind-generated gravity sea waves. Phys. D: Nonlin. Phenom. 184, 2963.Google Scholar
Pushkarev, A. & Zakharov, V.On nonlinearity implications and wind forcing in Hasselmann equation, 2015, Preprint, arXiv:1212.6522v1 e-prints.Google Scholar
Romero, L. & Melville, W. K. 2010 Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr. 40, 441465.Google Scholar
Sverdrup, H. V. & Munk, W. H.Wind, sea, and swell: Theory of relations for forecasting, 1947, Hydrographic Office Pub. 60, US Navy.Google Scholar
Toba, Y. 1961 Drop prediction by bursting of air bubbles on the sea surface (III). Study by use of a wind flume. Mem. Coll. Sci., Univ. Kyoto. Ser. A 29, 313344.Google Scholar
Toba, Y. 1972 Local balance in the air–sea boundary processes. Part I. On the growth process of wind waves. J. Oceanogr. Soc. Japan 28, 109121.Google Scholar
Toba, Y. 1973a Local balance in the air–sea boundary processes. II. Partition of wind stress to waves and current. J. Oceanogr. Soc. Japan 29, 7075.Google Scholar
Toba, Y. 1973b Local balance in the air–sea boundary processes. III. On the spectrum of wind waves. J. Oceanogr. Soc. Japan 29, 209220.Google Scholar
Tracy, B. & Resio, D.1982 Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WES Rep. 11. US Army, Engineer Waterways Experiment Station, Vicksburg, MS.Google Scholar
Webb, D. J. 1978 Non-linear transfers between sea waves. Deep-Sea Res. 25, 279298.Google Scholar
Wiegel, R. L. 1961 Wind waves and swell. In Proc. 7th Conf. Coastal Eng., pp. 140. The Engineering Foundation, Council on Wave Research.Google Scholar
Yefimov, V. V. & Babanin, A. V. 1991 Dispersion relation for the envelope of groups of wind waves. Izv. Atmos. Ocean. Phys. 27, 599603.Google Scholar
Young, I. R. 1999 Wind Generated Ocean Waves. Elsevier.Google Scholar
Young, I. R. & van Vledder, G. 1993 A review of the central role of nonlinear interactions in wind–wave evolution. Phil. Trans. R. Soc. Lond. 342, 505524.Google Scholar
Zakharov, V. E. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. (B/Fluids) 18, 327344.Google Scholar
Zakharov, V. E. 2002 Theoretical interpretation of fetch limited wind-driven sea observations. In 7th International Workshop on Wave Hindcasting and Forecasting, pp. 8692.Google Scholar
Zakharov, V. E. 2005 Theoretical interpretation of fetch limited wind-driven sea observations. Nonlinear Process. Geophys. 12, 10111020.Google Scholar
Zakharov, V. E. 2010 Energy balance in a wind-driven sea. Phys. Scr. T 142, 014052.Google Scholar
Zakharov, V. E. & Badulin, S. I. 2011 On energy balance in wind-driven seas. Dokl. Earth Sci. 440 (Part 2), 14401444.Google Scholar
Zakharov, V. E. & Filonenko, N. N. 1966 Energy spectrum for stochastic oscillations of the surface of a fluid. Sov. Phys. Dokl. 160, 12921295.Google Scholar
Zakharov, V. E., Lvov, V. S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Part I. Springer.Google Scholar
Zakharov, V. E., Resio, D. & Pushkarev, A. N.New wind input term consistent with experimental, theoretical and numerical considerations, 2012, Preprint, arXiv:1212.1069v1 e-prints.Google Scholar
Zakharov, V. E. & Zaslavsky, M. M. 1983 Dependence of wave parameters on the wind velocity, duration of its action and fetch in the weak-turbulence theory of water waves. Izv. Atmos. Ocean. Phys. 19 (4), 300306.Google Scholar
Zavadsky, A., Liberzon, D. & Shemer, L. 2013 Statistical analysis of the spatial evolution of the stationary wind wave field. J. Phys. Oceanogr. 43, 6579.Google Scholar