Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T13:55:11.447Z Has data issue: false hasContentIssue false

Upper-ocean Ekman current dynamics: a new perspective

Published online by Cambridge University Press:  28 January 2020

Victor I. Shrira*
Affiliation:
School of Computing and Mathematics, Keele University, KeeleST5 5BG, UK
Rema B. Almelah
Affiliation:
School of Computing and Mathematics, Keele University, KeeleST5 5BG, UK Department of Mathematics, Faculty of Science, Misurata University, Misurata, Libya
*
Email address for correspondence: v.i.shrira@keele.ac.uk

Abstract

The work examines upper-ocean response to time-varying winds within the Ekman paradigm. Here, in contrast to the earlier works we assume the eddy viscosity to be both time and depth dependent. For self-similar depth and time dependence of eddy viscosity and arbitrary time dependence of wind we find an exact general solution to the Navier–Stokes equations which describes the dynamics of the Ekman boundary layer in terms of the Green’s function. Two basic scenarios (a periodic wind and an increase of wind ending up with a plateau) are examined in detail. We show that accounting for the time dependence of eddy viscosity is straightforward and that it substantially changes the ocean response, compared to the predictions of the models with constant-in-time viscosity. We also examine the Stokes–Ekman equations taking into account the Stokes drift created by surface waves with an arbitrary spectrum and derive the general solution for the case of a linearly varying with depth eddy viscosity. Stability of transient Ekman currents to small-scale perturbations has never been examined. We find that the Ekman currents evolving from rest quickly become unstable, which breaks down the assumed horizontal uniformity. These instabilities proved to be sensitive to the model of eddy viscosity, they have small (${\sim}10^{2}~\text{m}$) spatial scales and can be very fast compared to the inertial period, which suggests spikes of dramatically enhanced mixing localized in the vicinity of the water surface. This picture is incompatible with the Ekman paradigm and thus prompts radical revision of the Ekman-type models.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions, NBS Applied Mathematics Series 55. National Bureau of Standards.Google Scholar
Ardhuin, F., Marié, L., Rascle, N., Forget, P. & Roland, A. 2009 Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr. 39 (11), 28202838.CrossRefGoogle Scholar
Babanin, A. 2011 Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press.CrossRefGoogle Scholar
Canuto, V. M., Howard, A. M., Cheng, Y., Muller, C. J., Leboissetier, A. & Jayne, S. R. 2010 Ocean turbulence, III: new GISS vertical mixing scheme. Ocean Model. 34 (3–4), 7091.CrossRefGoogle Scholar
Craik, A. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (3), 401426.CrossRefGoogle Scholar
Csanady, G. T. 2001 Air-Sea Interaction: Laws and Mechanisms. Cambridge University Press.CrossRefGoogle Scholar
Chereskin, T. K. 1995 Direct evidence for an Ekman balance in the California current. J. Geophys. Res. 100, 1826118269.CrossRefGoogle Scholar
Cushman-Roisin, B. & Beckers, J. M. 2007 Introduction to Geophysical Fluid Dynamics – Physical and Numerical Aspects. Academic Press.Google Scholar
Drazin, P. G. & Riley, N. 2006 The Navier–Stokes Equations: A Classification of Flows and Exact Solutions (No. 334). Cambridge University Press.CrossRefGoogle Scholar
Ekman, V. W. 1905 On the influence of the Earth’s rotation on ocean currents. Arch. Math. Astron. Phys. 2, 152.Google Scholar
Elipot, S. & Gille, S. T. 2009 Ekman layers in the Southern ocean: spectral models and observations, vertical viscosity and boundary layer depth. Ocean Sci. 5, 115139.CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. p. 662. Academic Press.Google Scholar
Gonella, J. 1971 A local study of inertial oscillations in the upper layers of the ocean. Deep-Sea Res. 18, 775788.Google Scholar
Graham, J. A., O’Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S. & Castillo Sanchez, J. M. 2018 AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf. Geosci. Model Develop. 11 (2), 681696.CrossRefGoogle Scholar
Grisogono, B. 1995 A generalized Ekman layer profile with gradually varying eddy diffusivities. Q. J. R. Meteorol. Soc. 121 (522), 445453.CrossRefGoogle Scholar
Guerra, M. & Thomson, J. 2017 Turbulence measurements from five-beam acoustic Doppler current profilers. J. Atmos. Ocean. Technol. 34 (6), 12671284.CrossRefGoogle Scholar
Harcourt, R. R. 2015 An improved second-moment closure model of Langmuir turbulence. J. Phys. Ocean. 45 (1), 84103.CrossRefGoogle Scholar
Healey, J. J.2017. Lecture Notes on Hydrodynamic Stability https://fluids.ac.uk/researcher-resources.Google Scholar
Huang, N. E. 1979 On surface drift currents in the ocean. J. Fluid Mech. 91 (01), 191208.CrossRefGoogle Scholar
Jenkins, A. D. & Bye, J. A. T. 2006 Some aspects of the work of V.W. Ekman. Polar Record 42 (220), 1522.CrossRefGoogle Scholar
Jordan, T. F. & Baker, J. R. 1980 Vertical structure of time-dependent flow dominated by friction in a well-mixed fluid. J. Phys. Oceanogr. 10 (7), 10911103.2.0.CO;2>CrossRefGoogle Scholar
Kantha, L. H. & Clayson, C. A. 2004 On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Model. 6 (2), 101124.CrossRefGoogle Scholar
Kirby, J. T. & Chen, T. M. 1989 Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. Oceans 94 (C1), 10131027.CrossRefGoogle Scholar
Komen, G. J., Cavaleri, L. & Donelan, M. 1996 Dynamics and Modelling of Ocean Waves. Cambridge University Press.Google Scholar
Kudryavtsev, V., Shrira, V., Dulov, V. & Malinovsky, V. 2008 On the vertical structure of wind-driven sea currents. J. Phys. Oceanogr. 38 (10), 21212144.CrossRefGoogle Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32 (4), 363403.CrossRefGoogle Scholar
Leibovich, S. & Lele, S. K. 1985 The influence of the horizontal component of the Earth’s angular velocity on the instability of the Ekman layer. J. Fluid Mech. 150, 4187.CrossRefGoogle Scholar
Lenn, Y. D.2006 Observations of Antarctic Circumpolar Current Dynamics in the Drake Passage and small-scale variability near the Antarctic Peninsula. Dissertation, University of California, San Diego.Google Scholar
Lewis, D. M. & Belcher, S. E. 2004 Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dynam. Atmos. Oceans 37, 313351.CrossRefGoogle Scholar
Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Palmer, T., Lock, A. et al. 2018 The UKC2 regional coupled environmental prediction system. Geosci. Model Dev. Discuss. 11, 142.CrossRefGoogle Scholar
Madsen, O. S. 1977 A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 7, 248255.2.0.CO;2>CrossRefGoogle Scholar
Merckelbach, L., Smeed, D. & Griffiths, G. 2010 Vertical water velocities from underwater gliders. J. Atmos. Ocean. Technol. 27 (3), 547563.CrossRefGoogle Scholar
McWilliams, J. C., Sullivan, P. P. & Moeng, C. H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.CrossRefGoogle Scholar
Nansen, F.(Ed.) 1905 The Norwegian North Polar Expedition, 1893–1896: Scientific Results, vol. 6. Longmans, Green and Company.Google Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Polton, J. A., Lewis, D. M. & Belcher, S. E. 2005 The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr. 35 (4), 444457.CrossRefGoogle Scholar
Price, J. F. & Sundermeyer, M. A. 1999 Stratified Ekman layers. J. Geophys. Res. 104 (C9), 2046720494.CrossRefGoogle Scholar
Price, J. F., Weller, R. A. & Schudlich, R. R. 1987 Wind-driven ocean currents and Ekman transport. Science 238, 15341538.CrossRefGoogle ScholarPubMed
Reichl, B. G., Wang, D., Hara, T., Ginis, I. & Kukulka, T. 2016 Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr. 46 (3), 863886.CrossRefGoogle Scholar
Shrira, V. I. & Forget, P. 2017 On the nature of near-inertial oscillations in the uppermost part of the ocean and a possible route towards HF radar probing of stratification. J. Phys. Oceanogr. 45, 26602678.CrossRefGoogle Scholar
Siedler, G., Gould, J. & Church, J. A. 2001 Ocean Circulation and Climate: Observing and Modelling the Global Ocean, vol. 103. Academic Press.Google Scholar
Soloviev, A. & Lucas, R. 2006 The Near-Surface Layer of the Ocean. Springer.Google Scholar
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 1942.CrossRefGoogle Scholar
Teague, C. C., Vesecky, J. F. & Hallock, Z. R. 2001 A comparison of multifrequency HF radar and ADCP measurements of near-surface currents during COPE-3. IEEE J. Ocean. Engng 26 (3), 399405.CrossRefGoogle Scholar
Tollmien, W. 1935 Ein allgemeines Kriterium der Instabilitāt laminarer Geschwindigke-itsverteilungen. Nachr. Wiss. Fachgruppe, Gōttingen, Math. Phys, Kl 1, 79114 (translation: General instability criterion of laminar velocity distributions. NACA Tech. Memo. 792 (1936)).Google Scholar
Umlauf, L. & Burchard, H. 2005 Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25 (7–8), 795827.CrossRefGoogle Scholar
Wang, W. & Huang, R. X. 2004 Wind energy input to the Ekman layer. J. Phys. Oceanogr. 34 (5), 12671275.2.0.CO;2>CrossRefGoogle Scholar
Weber, J. E. 1981 Ekman currents and mixing due to surface gravity waves. J. Phys. Oceanogr. 11, 14311435.2.0.CO;2>CrossRefGoogle Scholar
Weller, R. A. 1981 Observations of the velocity response to wind forcing in the upper ocean. J. Geophys. Res. 86, 19691977.CrossRefGoogle Scholar
Wirth, A. 2010 On the Ekman spiral with an anisotropic eddy viscosity. Boundary-Layer Meteorol. 137, 327331.CrossRefGoogle Scholar
Xu, Z. & Bowen, A. J. 1994 Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr. 24 (9), 18501866.2.0.CO;2>CrossRefGoogle Scholar
Zhang, R. H. & Zebiak, S. E. 2002 Effect of penetrating momentum flux over the surface boundary/mixed layer in az-coordinate OGCM of the tropical Pacific. J. Phys. Ocean. 32 (12), 36163637.2.0.CO;2>CrossRefGoogle Scholar
Zikanov, O., Slinn, D. N. & Dhanak, M. R. 2003 Large-eddy simulations of the wind-induced turbulent Ekman layer. J. Fluid Mech. 495, 343368.CrossRefGoogle Scholar