Published online by Cambridge University Press: 06 October 2015
In this work, we provide a viscous solution of the wave field generated by librating a disk (harmonic oscillation of the rotation rate) in a stably stratified rotating fluid. The zonal flow (mean flow correction) generated by the nonlinear interaction of the wave field is also calculated in the weakly nonlinear framework. We focus on the low dissipative limit relevant for geophysical applications and for which the wave field and the zonal flow exhibit generic features (Ekman scaling, universal structures, etc.). General expressions are obtained which depend on the disk radius $a^{\ast }$, the libration frequency
${\it\omega}^{\ast }$, the rotation rate
${\it\Omega}^{\ast }$ of the frame, the buoyancy frequency
$N^{\ast }$ of the fluid, its kinematic diffusion
${\it\nu}^{\ast }$ and its thermal diffusivity
${\it\kappa}^{\ast }$. When the libration frequency is in the inertia-gravity frequency interval (
$\min ({\it\Omega}^{\ast },N^{\ast })<{\it\omega}^{\ast }<\max ({\it\Omega}^{\ast },N^{\ast })$), the presence of conical internal shear layers is observed in which the spatial structures of the harmonic response and of the mean flow correction are provided. At the point of focus of these internal shear layers on the rotation axis, the largest amplitudes are obtained: the angular velocity of the harmonic response and the mean flow correction are found to be
$O({\it\varepsilon}E^{-1/3})$ and
$({\it\varepsilon}^{2}E^{-2/3})$ respectively, where
${\it\varepsilon}$ is the libration amplitude and
$E={\it\nu}^{\ast }/({\it\Omega}^{\ast }a^{\ast 2})$ is the Ekman number. We show that the solution in the internal shear layers and in the focus region is at leading order the same as that generated by an oscillating source of axial flow localized at the edge of the disk (oscillating Dirac ring source).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.