Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T12:49:26.221Z Has data issue: false hasContentIssue false

Aerodynamics and fluid–structure interaction of an airfoil with actively controlled flexible leeward surface

Published online by Cambridge University Press:  06 January 2023

Xi He
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Qinfeng Guo
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Yang Xu
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Lihao Feng
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Jinjun Wang*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
*
Email address for correspondence: jjwang@buaa.edu.cn

Abstract

Piezoelectric macro-fibre composite (MFC) actuators are employed onto the flexible leeward surface of an airfoil for active control. Time-resolved aerodynamic forces, membrane deformations and flow fields are synchronously measured at low Reynolds number (Re = 6 × 104). Mean aerodynamics show that the actively controlled airfoil can achieve lift-enhancement and drag-reduction simultaneously in the angle of attack range of 10° ≤ α ≤ 14°, where the rigid airfoil encounters stall. The maximum increments of lift and lift-to-drag ratio are 27.1 % and 126 % at the reduced actuation frequency of ${f^ + } = 3.52$. The unsteady coupling features are further analysed at α = 12°, where the maximum lift-enhancement occurs. It is newly discovered that the membrane vibrations and flow fields are locked into half of the actuation frequency when ${f^ + } > 3$. The shift of the dominant vibration mode from bending to inclining is the reason for the novel ‘half-frequency lock-in’ phenomenon. To the fluid–structure interaction, there are three characteristic frequencies for the actively controlled airfoil: $S{t_1} = 0.5{f^ + }$, $S{t_2} = {f^ + }$, and $S{t_3} = 1.5{f^ + }$. Here, St1 and its harmonics (St2, St3) are coupled with the natural frequencies of the leading-edge shear layer, resulting in the generation of multi-scale flow structures and suppression of flow separation. The lift presents comparable dominant frequencies between St1 and St3, which means the instantaneous lift is determined by the flow structures of St1 and St3. The local membrane bulge and dent affect the instantaneous swirl strength of flow structures near the maximum vibration amplitude location, which is the main reason for the variation of instantaneous lift.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Açikel, H.H. & Genç, M.S. 2018 Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy 165, 176190.CrossRefGoogle Scholar
Arbós-Torrent, S., Ganapathisubramani, B. & Palacios, R. 2013 Leading- and trailing-edge effects on the aeromechanics of membrane aerofoils. J. Fluids Struct. 38, 107126.CrossRefGoogle Scholar
Arif, I., Lam, G.C.Y. & Leung, R.C.K. 2022 Coupled structural resonance of elastic panels for suppression of airfoil tonal noise. J. Fluids Struct. 110, 103506.CrossRefGoogle Scholar
Arif, I., Lam, G.C.Y., Wu, D. & Leung, R.C.K. 2020 Passive airfoil tonal noise reduction by localized flow-induced vibration of an elastic panel. Aerosp. Sci. Technol. 107, 106319.CrossRefGoogle Scholar
Bai, H.L., Zhou, Y., Zhang, W.G., Xu, S.J., Wang, Y. & Antonia, R.A. 2014 Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316354.CrossRefGoogle Scholar
Barbu, A., de Kat, R. & Ganapathisubramani, B. 2018 Aerodynamic performance of electro-active acrylic membrane wings. AIAA J. 56 (11), 42434260.CrossRefGoogle Scholar
Béguin, B., Breitsamter, C. & Adams, N. 2012 Aerodynamic investigations of a morphing membrane wing. AIAA J. 50 (11), 25882599.CrossRefGoogle Scholar
Bilgen, O., Kochersberger, K.B., Diggs, E.C., Kurdila, A.J. & Inman, D.J. 2007 Morphing wing micro-air-vehicles via macro-fiber-composite actuators. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper 2007-1785.Google Scholar
Bilgen, O., Kochersberger, K.B., Inman, D.J. & Ohanian, O.J. III 2010 Novel, bidirectional, variable-camber airfoil via macro-fiber composite actuators. J. Aircraft 47 (1), 303314.CrossRefGoogle Scholar
Bleischwitz, R. 2016 Fluid-structure interactions of membrane wings in free-flight and in ground-effect. PhD thesis, University of Southampton.Google Scholar
Bleischwitz, R., de Kat, R. & Ganapathisubramani, B. 2015 Aspect-ratio effects on aeromechanics of membrane wings at moderate Reynolds numbers. AIAA J. 53 (3), 780788.CrossRefGoogle Scholar
Bleischwitz, R., de Kat, R. & Ganapathisubramani, B. 2016 Aeromechanics of membrane and rigid wings in and out of ground-effect at moderate Reynolds numbers. J. Fluids Struct. 62, 318331.CrossRefGoogle Scholar
Bleischwitz, R., de Kat, R. & Ganapathisubramani, B. 2017 On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect. J. Fluids Struct. 70, 214234.CrossRefGoogle Scholar
Bleischwitz, R., de Kat, R. & Ganapathisubramani, B. 2018 Near-wake characteristics of rigid and membrane wings in ground-effect. J. Fluids Struct. 80, 199216.CrossRefGoogle Scholar
Bohnker, J.R. & Breuer, K.S. 2019 Control of separated flow using actuated compliant membrane wings. AIAA J. 57 (9), 38013811.CrossRefGoogle Scholar
Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S. & Le Sant, Y. 2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50 (4), 11691182.CrossRefGoogle Scholar
Christensen, K.T. 2004 The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36 (3), 484497.CrossRefGoogle Scholar
Curet, O.M., Carrere, A., Waldman, R. & Breuer, K.S. 2014 Aerodynamic characterization of a wing membrane with variable compliance. AIAA J. 52 (8), 17491756.CrossRefGoogle Scholar
Debiasi, M., Bouremel, Y., Khoo, H.H. & Luo, S.C. 2012 Deformation of the upper surface of an airfoil by macro fiber composite actuators. In 30th AIAA Applied Aerodynamics Conference. AIAA Paper 2012-3206.CrossRefGoogle Scholar
Debiasi, M., Bouremel, Y., Khoo, H.H., Luo, S.C. & Elvin, T.Z. 2011 Shape change of the upper surface of an airfoil by macro fiber composite actuators. In 29th AIAA Applied Aerodynamics Conference. AIAA Paper 2011-3809.CrossRefGoogle Scholar
Debiasi, M., Bouremel, Y., Lu, Z.B. & Ravichandran, V. 2013 Deformation of the upper and lower surfaces of an airfoil by macro fiber composite actuators. In 31st AIAA Applied Aerodynamics Conference. AIAA Paper 2013-2405.CrossRefGoogle Scholar
Feng, S.Y., Guo, Q.F., Wang, J.J. & Xu, Y. 2022 Influence of membrane wing active deformation on the aerodynamic performance of an aircraft model. Sci. China Technol. Sci. 65 (10), 24742484.CrossRefGoogle Scholar
Gao, Y.F. 2012 Study on the unsteady aerodynamics characteristics for the morphing airfoil. PhD thesis, University of Science and Technology of China (in Chinese).Google Scholar
Genç, M.S., Açikel, H.H. & Koca, K. 2020 Effect of partial flexibility over both upper and lower surfaces to flow over wind turbine airfoil. Energy Convers. Manage. 219, 113042.CrossRefGoogle Scholar
Georges, T., Brailovski, V., Morellon, E., Coutu, D. & Terriault, P. 2009 Design of shape memory alloy actuators for morphing laminar wing with flexible extrados. J. Mech. Design 131, 091006.CrossRefGoogle Scholar
Gordnier, R.E. 2009 High fidelity computational simulation of a membrane wing airfoil. J. Fluids Struct. 25 (5), 897917.CrossRefGoogle Scholar
Guo, Q.F., He, X., Wang, Z. & Wang, J.J. 2021 Effects of wing flexibility on the aerodynamic performance of an aircraft model. Chin. J. Aeronaut. 34 (9), 133142.CrossRefGoogle Scholar
Hays, M.R., Morton, J., Dickinson, B., Chakravarty, U.K. & Oates, W.S. 2012 Aerodynamic control of micro air vehicle wings using electroactive membranes. J. Intell. Mater. Syst. Struct. 24 (7), 862887.CrossRefGoogle Scholar
He, X., Guo, Q.F. & Wang, J.J. 2022 Regularities between kinematic and aerodynamic characteristics of flexible membrane wing. Chin. J. Aeronaut. 35, 209218.CrossRefGoogle Scholar
He, X. & Wang, J.J. 2020 Fluid-structure interaction of a flexible membrane wing at a fixed angle of attack. Phys. Fluids 32, 127102.CrossRefGoogle Scholar
Ho, C.M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Hsiao, F.B., Liu, C.F. & Shyu, J.Y. 1990 Control of wall-separated flow by internal acoustic excitation. AIAA J. 28, 14401446.CrossRefGoogle Scholar
Hu, Y.W., Feng, L.H. & Wang, J.J. 2020 Passive oscillations of inverted flags in a uniform flow. J. Fluid Mech. 884, A32.CrossRefGoogle Scholar
Hu, H., Tamai, M. & Murphy, T. 2008 Flexible-membrane airfoils at low Reynolds numbers. J. Aircraft 45 (5), 17671778.CrossRefGoogle Scholar
Huang, G.J., Xia, Y.J., Dai, Y.T., Yang, C. & Wu, Y. 2021 Fluid-structure interaction in piezoelectric energy harvesting of a membrane wing. Phys. Fluids 33, 063610.CrossRefGoogle Scholar
Jones, G., Debiasi, M., Bouremel, Y., Santer, M. & Papadakis, G. 2015 Open-loop flow control at low Reynolds numbers using periodic airfoil morphing. In 53rd AIAA Aerospace Sciences Meeting. AIAA Paper 2015-1933.CrossRefGoogle Scholar
Jones, G.S., Yao, C.S. & Allan, B.G. 2006 Experimental investigation of a 2D supercritical circulation-control airfoil using particle image velocimetry. In 3rd AIAA Flow Control Conference. AIAA Paper 2006-3009.CrossRefGoogle Scholar
Kline, S.J. & Mcclintock, F.A. 1953 Describing uncertainties in single-sample experiments. Mech. Engng 75, 38.Google Scholar
Leighton, G.J.T. & Huang, Z. 2010 Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry. Smart Mater. Struct. 19 (6), 065011.CrossRefGoogle Scholar
Li, G., Jaiman, R.K. & Khoo, B.C. 2021 Flow-excited membrane instability at moderate Reynolds numbers. J. Fluid Mech. 929, A40.CrossRefGoogle Scholar
Lian, Y., Shyy, W., Viieru, D. & Zhang, B. 2003 Membrane wing aerodynamics for micro air vehicles. Prog. Aerosp. Sci. 39, 425465.CrossRefGoogle Scholar
Ma, L.Q., Feng, L.H., Pan, C., Gao, Q. & Wang, J.J. 2015 Fourier mode decomposition of PIV data. Sci. China Technol. Sci. 58 (11), 19351948.CrossRefGoogle Scholar
Marxen, O., Lang, M., Rist, U., Levin, O. & Henningson, D.S. 2009 Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J. Fluid Mech. 634, 165189.CrossRefGoogle Scholar
Mendez, M.A., Balabane, M. & Buchlin, J.-M. 2019 Multi-scale proper orthogonal decomposition of complex fluid flows. J. Fluid Mech. 870, 9881036.CrossRefGoogle Scholar
Michos, A., Bergeles, G. & Athanassiadis, N. 1983 Aerodynamic characteristics of NACA 0012 airfoil in relation to wind generators. Wind Engng 7 (4), 247262.Google Scholar
Munday, P.M. & Taira, K. 2018 Effects of wall-normal and angular momentum injections in airfoil separation control. AIAA J. 56 (5), 18301842.CrossRefGoogle Scholar
Nováková, K. & Mokrý, P. 2011 Numerical simulation of mechanical behavior of a macro fiber composite piezoelectric actuator shunted by a negative capacitor. In 10th International Workshop on Electronics, Control, Measurement and Signals (ECMS). IEEE.CrossRefGoogle Scholar
Pan, C., Wang, H. & Wang, J.J. 2013 Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas. Sci. Technol. 24, 055305.CrossRefGoogle Scholar
Pan, C., Xue, D., Xu, Y., Wang, J.J. & Wei, R.J. 2015 Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci. China Phys. Mech. Astron. 58 (10), 116.Google Scholar
Pflüger, J. & Breitsamter, C. 2021 Experimental investigations of a full model with adaptive elasto-flexible membrane wings. Chin. J. Aeronaut. 34 (7), 211218.CrossRefGoogle Scholar
Rodríguez-López, E., Carter, D.W. & Ganapathisubramani, B. 2021 Dynamic mode decomposition-based reconstructions for fluid-structure interactions: an application to membrane wings. J. Fluids Struct. 104, 103315.CrossRefGoogle Scholar
Rojratsirikul, P., Genc, M.S., Wang, Z. & Gursul, I. 2011 Flow-induced vibrations of low aspect ratio rectangular membrane wings. J. Fluids Struct. 27, 12961309.CrossRefGoogle Scholar
Rojratsirikul, P., Wang, Z. & Gursul, I. 2009 Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers. Exp. Fluids 46, 859872.CrossRefGoogle Scholar
Rojratsirikul, P., Wang, Z. & Gursul, I. 2010 Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils. J. Fluids Struct. 26, 359376.CrossRefGoogle Scholar
Schlegel, C., Kieckenap, G., Glöckner, B., Bu, A. & Kumme, R. 2012 Traceable periodic force calibration. Metrologia 49 (3), 224235.CrossRefGoogle Scholar
Seifert, A. 2015 Evaluation criteria and performance comparison of actuators. In Instability and Control of Massively Separated Flows, Fluid Mechanics and Its Applications, vol. 107. Springer.CrossRefGoogle Scholar
Serrano-Galiano, S., Sandham, N.D. & Sandberg, R.D. 2018 Fluid-structure coupling mechanism and its aerodynamic effect on membrane aerofoils. J. Fluid Mech. 848, 11271156.CrossRefGoogle Scholar
Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, S. & Breuer, K. 2008 Aeromechanics of membrane wings with implications for animal flight. AIAA J. 46 (8), 20962106.CrossRefGoogle Scholar
Sun, X. & Zhang, J. 2017 Effect of the reinforced leading or trailing edge on the aerodynamic performance of a perimeter-reinforced membrane wing. J. Fluids Struct. 68, 90112.CrossRefGoogle Scholar
Sun, X., Zhang, X., Su, Z. & Huang, D. 2022 Experimental study of aerodynamic characteristics of partially flexible NACA0012 airfoil. AIAA J. 60 (9), 53865400.CrossRefGoogle Scholar
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA TR 496, pp. 291–311.Google Scholar
Timpe, A., Zhang, Z., Hubner, J. & Ukeiley, L. 2013 Passive flow control by membrane wings for aerodynamic benefit. Exp. Fluids 54 (3), 1471.CrossRefGoogle Scholar
Tiomkin, S. & Raveh, D.E. 2019 On membrane-wing stability in laminar flow. J. Fluids Struct. 91, 102694.CrossRefGoogle Scholar
Tiomkin, S. & Raveh, D.E. 2021 A review of membrane-wing aeroelasticity. Prog. Aerosp. Sci. 126, 100738.CrossRefGoogle Scholar
Tregidgo, L., Wang, Z. & Gursul, I. 2013 Unsteady fluid-structure interactions of a pitching membrane wing. Aerosp. Sci. Technol. 28 (1), 7990.CrossRefGoogle Scholar
Waldman, R.M. & Breuer, K.S. 2017 Camber and aerodynamic performance of compliant membrane wings. J. Fluids Struct. 68, 390402.CrossRefGoogle Scholar
Wang, T., Feng, L.H. & Li, Z.Y. 2021 Effect of leading-edge protuberances on unsteady airfoil performance at low Reynolds number. Exp. Fluids 62, 217.CrossRefGoogle Scholar
Wang, J.S., Feng, L.H., Wang, J.J. & Li, T. 2018 Görtler vortices in low-Reynolds-number flow over multi-element airfoil. J. Fluid Mech. 835, 898935.CrossRefGoogle Scholar
Wang, J.S. & Wang, J.J. 2021 Wake-induced transition in the low-Reynolds number flow over a multi-element airfoil. J. Fluid Mech. 915, A28.CrossRefGoogle Scholar
Wang, J.S., Wang, J.J. & Kim, K.C. 2019 Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil. Exp. Fluids 60, 16.CrossRefGoogle Scholar
Wilkie, W.K., Bryant, R.G., High, J.W., Fox, R.L., Hellbaum, R.F., Jalink, A. Jr., Little, B.D. & Mirick, P.H. 2000 Low-cost piezocomposite actuator for structural control applications. In Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies. Proceedings of SPIE 3991.CrossRefGoogle Scholar
Wu, J.Z., Lu, X.Y., Denny, A.G., Fan, M. & Wu, J.M. 1998 Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 2158.CrossRefGoogle Scholar
Yu, D., Zhang, B.M. & Liang, J. 2008 A changeable aerofoil actuated by shape memory alloy springs. Mater. Sci. Engng A 485, 243250.Google Scholar
Zhang, L., Wang, Y., Yin, X., Schlegel, C. & Kumme, R. 2018 Comparison results between PTB and CIMM on the force transducer calibration under sinusoidal loading. J. Phys: Conf. Ser. 1065, 042019.Google Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhou, Y., Alam, M.M., Yang, H.X., Guo, H. & Wood, D.H. 2011 Fluid forces on a very low Reynolds number airfoil and their prediction. Intl J. Heat Fluid Flow 32 (1), 329339.CrossRefGoogle Scholar