Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T13:17:13.115Z Has data issue: false hasContentIssue false

An exact Riemann-solver-based solution for regular shock refraction

Published online by Cambridge University Press:  25 May 2009

P. DELMONT*
Affiliation:
Centre for Plasma Astrophysics, K.U. Leuven, 3001 Heverlee, Belgium Leuven Mathematical Modeling and Computational Science Centre, 3001 Heverlee, Belgium
R. KEPPENS
Affiliation:
Centre for Plasma Astrophysics, K.U. Leuven, 3001 Heverlee, Belgium Leuven Mathematical Modeling and Computational Science Centre, 3001 Heverlee, Belgium Astronomical Institute, Utrecht University, 3584 Utrecht, The Netherlands FOM institute for Plasma Physics Rijnhuizen, 3434 Nieuwegein, The Netherlands
B. VAN DER HOLST
Affiliation:
Centre for Space Environment Modeling, Ann Arbor, MI 48103, USA
*
Email address for correspondence: peter.delmont@wis.kuleuven.be

Abstract

We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts, and in the hydrodynamical case three signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin–Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer–Meshkov instability (RMI). We present an exact Riemann-solver-based solution strategy to describe the initial self-similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how its addition increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave-pattern transitions, in agreement with experiments, von Neumann shock refraction theory and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the RMI.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd-El-Fattah, A. M. & Henderson, L. F. 1978 a Shock waves at a fast–slow gas interface. J. Fluid Mech. 86, 1532.CrossRefGoogle Scholar
Abd-El-Fattah, A. M. & Henderson, L. F. 1978 b Shock waves at a slow–fast gas interface. J. Fluid Mech. 89, 7995.CrossRefGoogle Scholar
Barmin, A. A., Kulikovskiy, A. G. & Pogorelov, N. V. 1996 Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics. J. Comput. Phys. 126, 7790.CrossRefGoogle Scholar
Brio, M. & Wu, C. C. 1988 An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400422.CrossRefGoogle Scholar
Chao, J. K., Lyu, L. H., Wu, B. H., Lazarus, A. J., Chang, T. S. & Lepping, R. P. 1993 Observation of an intermediate shock in interplanetary space. J. Geophys. Res. 98, 1744317450.CrossRefGoogle Scholar
Chu, C. K. & Taussig, R. T. 1967 Numerical experiments of magnetohydrodynamic shocks and the stability of switch-on shocks. Phys. Fluids 10, 249256.CrossRefGoogle Scholar
De Sterck, H., Low, B. C. & Poedts, S. 1998 Complex magnetohydrodynamic bow shock topology in field-aligned low-β flow around a perfectly conducting cylinder. Phys. Plasmas 11, 40154027.CrossRefGoogle Scholar
Falle, S. A. E. G. & Komissarov, S. S. 1997 On the existence of intermediate shocks. Mon. Not. R. Astron. Soc. 123, 265277.Google Scholar
Falle, S. A. E. G. & Komissarov, S. S. 2001 On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65, 2958.CrossRefGoogle Scholar
Feng, H. & Wang, J. M. 2008 Observations of a 2 → 3 type interplanetary intermediate shock. Solar Phys. 247, 195201.CrossRefGoogle Scholar
Goedbloed, H. & Poedts, S. 2004 Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas. Cambridge University PressCrossRefGoogle Scholar
Hawley, J. F. & Zabusky, N. J. 1989 Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett. 63, 12411245.CrossRefGoogle ScholarPubMed
Henderson, R. F. 1966 The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607637.CrossRefGoogle Scholar
Henderson, R. F. 1991 On the refraction of shock waves at a slow–fast gas interface. J. Fluid Mech. 224, 127.CrossRefGoogle Scholar
van der Holst, B., & Keppens, R. 2007 Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications. J. Comput. Phys. 26, 925946.CrossRefGoogle Scholar
Jahn, R. G. 1956 The refraction of shock waves at a gaseous interface. J. Comput. Phys. 1, 457489.Google Scholar
Keppens, R., Nool, M., Tóth, G. & Goedbloed, H. 2003 Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation. J. Comput. Phys. 153, 317339.CrossRefGoogle Scholar
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-Th. & Müller, E. 2006 Nonspherical core collapse supernovae. Astron. Astrophys. 453, 661678.CrossRefGoogle Scholar
Lax, P. D. 1957 Hyperbolic system of conservation laws. Part 2. Comm. Pure Appl. Math. 10, 537566.CrossRefGoogle Scholar
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Mulder, W., Osher, S. & Sethian, J. A. 1992 Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209228.CrossRefGoogle Scholar
Myong, R. S. & Roe, P. L. 1997 a Shock waves and rarefaction waves in magnetohydrodynamics. Part 1. A model system. J. Plasma Phys. 58, 485.CrossRefGoogle Scholar
Myong, R. S. & Roe, P. L. 1997 b Shock waves and rarefaction waves in magnetohydrodynamics. Part 2. The MHD system. J. Plasma Phys. 58, 521.CrossRefGoogle Scholar
von Neumann, J. 1963 Collected Works, vol. 6. Permagon.Google Scholar
Nouragliev, R. R., Sushchikh, S. Y., Dinh, T. N. & Theofanous, T. G. 2005 Shock wave refraction patterns at interfaces. Intl J. Multiphase Flow 31, 969995.CrossRefGoogle Scholar
Oron, D., Sadot, O., Srebro, Y., Rikanati, A., Yedvab, Y., Alon, U., Erez, L., Erez, G., Bendor, G., Levin, L. A., Ofer, D. & Shvarts, D. 1999 Studies in the nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities and their role in inertial confinement fusion. Laser Part. Beams 17, 465475.CrossRefGoogle Scholar
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Comm. Pure Appl. Math. 13, 297319.CrossRefGoogle Scholar
Samtaney, R. 2003 Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field. Phys. Fluids 15, L53L56.CrossRefGoogle Scholar
Samtaney, R., Ray, J. & Zabusky, N. J. 1998 Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids 10, 12171230.CrossRefGoogle Scholar
Sturtevant, B. 1987 Shock Tubes and Waves. VCH Verlag.Google Scholar
Taub, A. H. 1947 Refraction of plane shock waves. Phys. Review 72, 5159.CrossRefGoogle Scholar
Todd, L. 1965 Evolution of switch-on and switch-off shocks in a gas of finite electrical conductivity. J. Fluid Mech. 24, 597608.CrossRefGoogle Scholar
Toro, E. F. 1999 Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Tóth, G. & Odstrčil, D. 1996 Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128 (1), 82100.CrossRefGoogle Scholar
Wheatley, V., Pullin, D. I. & Samtaney, R. 2005 Regular shock refraction at an oblique planar density interface in magnetohydrodynamics. J. Fluid Mech. 552, 179217.CrossRefGoogle Scholar
Yee, H. C. 1989 A class of high-resolution explicit and implicit shock-capturing methods. Tech Rep. TM101088. NASA.Google Scholar