Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T23:14:13.814Z Has data issue: false hasContentIssue false

Arrest of the flow of wet granular matter

Published online by Cambridge University Press:  06 December 2013

Klaus Roeller
Affiliation:
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), 37077 Göttingen, Germany
Johannes Blaschke
Affiliation:
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), 37077 Göttingen, Germany Fakultät für Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
Stephan Herminghaus
Affiliation:
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), 37077 Göttingen, Germany Fakultät für Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
Jürgen Vollmer*
Affiliation:
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), 37077 Göttingen, Germany Fakultät für Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
*
Email address for correspondence: juergen.vollmer@ds.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the arrest of three-dimensional flow of wet granular matter subject to a sinusoidal external force and a gravitational field confining the flow in the vertical direction. The minimal strength of the external force that is required to keep the system in motion, i.e. the critical force, is determined by considering the balance of injected and dissipated power. This provides a prediction whose quality is demonstrated by a data collapse for an extensive set of event-driven molecular-dynamics simulations where we varied the system size, particle number, the energy dissipated upon rupturing capillary bridges, and the bridge length at which rupture occurs. The same approach also works for systems that are kept at a fixed density by confining walls. In both cases, this universal method provides the critical force irrespective of the flow profile, and without specifying the hydrodynamic equations.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
©2013 Cambridge University Press.

References

Andreotti, B., Daerr, A. & Douady, S. 2002 Scaling laws in granular flows down a rough plane. Phys. Fluids 14 (1), 415.Google Scholar
Andreotti, B. & Douady, S. 2001 Selection of velocity profile and flow depth in granular flows. Phys. Rev. E 63 (3), 031305.Google Scholar
Antonyuk, S., Heinrich, S., Deen, N. & Kuipers, H. 2009 Influence of liquid layers on energy absorption during particle impact. Particuology 7 (4), 245259.Google Scholar
Aranson, I. S. & Tsimring, L. S. 2006 Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78 (2), 641.CrossRefGoogle Scholar
Berardi, C. R., Barros, K., Douglas, J. F. & Losert, W. 2010 Direct observation of stringlike collective motion in a two-dimensional driven granular fluid. Phys. Rev. E 81 (4), 041301.Google Scholar
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. 2011 Jamming by shear. Nature 480 (7377), 355358.CrossRefGoogle ScholarPubMed
Borzsonyi, T. & Ecke, R. E. 2007 Flow rule of dense granular flows down a rough incline. Phys. Rev. E 76 (3), 031301.Google Scholar
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. 1998 Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81 (9), 18411844.Google Scholar
Davis, R. H., Rager, D. A. & Good, B. T. 2002 Elastohydrodynamic rebound of spheres from coated surfaces. J. Fluid Mech. 468, 107119.Google Scholar
Donahue, C. M., Brewer, W. M., Davis, R. H. & Hrenya, C. M. 2012a Agglomeration and de-agglomeration of rotating wet doublets. J. Fluid Mech. 708, 128148.CrossRefGoogle Scholar
Donahue, C. M., Davis, R. H., Kantak, A. A. & Hrenya, C. M. 2012b Mechanisms for agglomeration and deagglomeration following oblique collisions of wet particles. Phys. Rev. E 86, 021303.Google Scholar
Donahue, C. M., Hrenya, C. M. & Davis, R. H. 2010a Stokes’ cradle: Newton’s cradle with liquid coating. Phys. Rev. Lett. 105, 034501.Google Scholar
Donahue, C. M., Hrenya, C. M., Davis, R. H., Nakagawa, K. J., Zelinskaya, A. P. & Joseph, G. G. 2010b Stokes’ cradle: normal three-body collisions between wetted particles. J. Fluid Mech. 650, 479504.CrossRefGoogle Scholar
Drocco, J. A., Hastings, M. B., Olson Reichhardt, C. J. & Reichhardt, C. 2005 Multiscaling at point $j$ : jamming is a critical phenomenon. Phys. Rev. Lett. 95 (8), 088001.CrossRefGoogle Scholar
Rahbari, S. H. E., Vollmer, J., Herminghaus, S. & Brinkmann, M. 2009 A response function perspective on yielding of wet granular matter. Europhys. Lett. 87, 14002.CrossRefGoogle Scholar
Fingerle, A., Roeller, K., Huang, K. & Herminghaus, S. 2008 Phase transitions far from equilibrium in wet granular matter. New J. Phys. 10 (5), 053020.Google Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.Google Scholar
GDR MiDi, 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.Google Scholar
Gollwitzer, F., Rehberg, I., Kruelle, C. A. & Huang, K. 2012 Coefficient of restitution for wet particles. Phys. Rev. E 86, 011303.Google Scholar
van Hecke, M. 2010 Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Condensed Matter 22 (3), 033101.Google Scholar
Herminghaus, S. 2005 Dynamics of wet granular matter. Adv. Phys. 54 (3), 221261.Google Scholar
Hoover, W. G. 1983 Nonequilibrium molecular dynamics. Annu. Rev. Phys. Chem. 34 (1), 103127.CrossRefGoogle Scholar
Huang, K., Roeller, K. & Herminghaus, S. 2009 Universal and non-universal aspects of wet granular matter under vertical vibrations. Eur. Phys. J. Special Topics 179, 2532.Google Scholar
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68 (4), 12591273.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.Google Scholar
Kadanoff, L. P. 1999 Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71 (1), 435444.Google Scholar
Kantak, A. A., Hrenya, C. M. & Davis, R. H. 2009 Initial rates of aggregation for dilute, granular flows of wet particles. Phys. Fluids 21, 023301.CrossRefGoogle Scholar
Liao, C.-C. & Hsiau, S.-S. 2010 Experimental analysis of dynamic properties in wet sheared granular matter. Powder Technol. 197 (3), 222229.Google Scholar
Lois, G., Blawzdziewicz, J. & O’Hern, C. S. 2007 Jamming in attractive granular media. Proc. Appl. Maths. Mech. 7 (1), 10906051090606.Google Scholar
Lois, G., Blawzdziewicz, J. & O’Hern, C. S. 2008 Jamming transition and new percolation universality classes in particulate systems with attraction. Phys. Rev. Lett. 100, 028001.Google Scholar
Lois, G., Zhang, J., Majmudar, T. S., Henkes, S., Chakraborty, B., O’Hern, C. S. & Behringer, R. P. 2009 Stress correlations in granular materials: an entropic formulation. Phys. Rev. E 80, 060303.CrossRefGoogle ScholarPubMed
Luding, S. 2009 Towards dense, realistic granular media in 2d. Nonlinearity 22 (12), R101R146.Google Scholar
Mitarai, N. & Nori, F. 2006 Wet granular materials. Adv. Phys. 55 (1–2), 145.Google Scholar
O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. 2003 Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68 (1), 011306.Google Scholar
Pitois, O., Moucheront, P. & Chateau, X. 2000 Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231, 2631.CrossRefGoogle ScholarPubMed
Quartier, L., Andreotti, B., Douady, S. & Daerr, A. 2000 Dynamics of a grain on a sandpile model. Phys. Rev. E 62 (6), 8299.CrossRefGoogle ScholarPubMed
Rahbari, S. H. E., Vollmer, J., Herminghaus, S. & Brinkmann, M. 2009 A response function perspective on yielding of wet granular matter. Europhys. Lett. 87 (1), 14002.Google Scholar
Rahbari, S. H. E., Vollmer, J., Herminghaus, S. & Brinkmann, M. 2010 Fluidization of wet granulates under shear. Phys. Rev. E 82 (6), 061305.Google Scholar
Remy, B., Khinast, J. G. & Glasser, B. J. 2012. Wet granular flows in a bladed mixer: experiments and simulations of monodisperse spheres, AIChE J. (submitted).Google Scholar
Ren, J., Dijksman, J. A. & Behringer, R. P. 2011 Linear shear in a model granular system. CHAOS.Google Scholar
Roeller, K. 2010. Numerical simulations of wet granular matter. PhD thesis, University Goettingen.Google Scholar
Roeller, K., Vollmer, J. & Herminghaus, S. 2009 Unstable Kolmogorov flow in granular matter. CHAOS 19 (4), 041106.CrossRefGoogle ScholarPubMed
Rognon, P. G., Roux, J.-N., Naaïm, M. & Chevoir, F. 2008 Dense flows of cohesive granular materials. J. Fluid Mech. 596, 2147.CrossRefGoogle Scholar
Rognon, P. G., Roux, J.-N., Wolf, D., Naaïm, M. & Chevoir, F. 2006 Rheophysics of cohesive granular materials. Eur. Phys. Lett. 74 (4), 644.Google Scholar
Schall, P. & van Hecke, M. 2010 Shear bands in matter with granularity. Annu. Rev. Fluid Mech. 42 (1), 6788.Google Scholar
Schulz, B. M. & Schulz, M. 2006 The dynamics of wet granular matter. J. Non-Crystalline Solids 352 (42–49), 48774879.CrossRefGoogle Scholar
Schulz, M., Schulz, B. M. & Herminghaus, S. 2003 Shear-induced solid–fluid transition in a wet granular medium. Phys. Rev. E 67 (5), 052301.Google Scholar
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64 (5), 051302.Google Scholar
Slotterback, S., Mailman, M., Ronaszegi, K., van Hecke, M., Girvan, M. & Losert, W. 2012 Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E 85 (2), 021309.CrossRefGoogle ScholarPubMed
Tordesillas, A., Lin, Q., Zhang, J., Behringer, R. P. & Shi, J. 2011 Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265296.CrossRefGoogle Scholar
Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. 2001 Jamming phase diagram for attractive particles. Nature 411, 772775.Google Scholar
Ulrich, S., Aspelmeier, T., Roeller, K., Fingerle, A., Herminghaus, S. & Zippelius, A. 2009a Cooling and aggregation in wet granulates. Phys. Rev. Lett. 102 (14), 148002.CrossRefGoogle ScholarPubMed
Ulrich, S., Aspelmeier, T., Zippelius, A., Roeller, K., Fingerle, A. & Herminghaus, S. 2009b Dilute wet granular particles: nonequilibrium dynamics and structure formation. Phys. Rev. E 80 (3), 031306.Google Scholar
Utter, B. & Behringer, R. P. 2008 Experimental measures of affine and nonaffine deformation in granular shear. Phys. Rev. Lett. 100, 208302.CrossRefGoogle ScholarPubMed
Valverde, J. M., Quintanilla, M. A. S. & Castellanos, A. 2004 Jamming threshold of dry fine powders. Phys. Rev. Lett. 92 (25), 258303.Google Scholar
Zhang, J., Majmudar, T. S., Tordesillas, A. & Behringer, R. P. 2010 Statistical properties of a 2D granular material subjected to cyclic shear. Granul. Matt. 12 (2), 159172.Google Scholar