Published online by Cambridge University Press: 31 July 2014
Closed bilayer membranes (vesicles) display a plethora of non-spherical shapes under equilibrium conditions, unlike drops and bubbles which are kept spherical by surface tension. Even more complex behaviour arises under applied flow. Intriguingly, a vesicle can adopt asymmetric shapes even under symmetric forcing such as uniaxial extensional flow. Narasimhan, Spann & Shaqfeh (J. Fluid Mech., vol. 750, 2014, pp. 144–190) explain the mechanism of this peculiar instability and trace its origin to the tension which develops in the area-incompressible membrane in response to the applied stress. The authors also show that this mechanism is relevant to the pearling of tubular vesicles. This study raises many questions, e.g. whether other soft particles with load-dependent tension such as capsules can undergo similar shape transformations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.