Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-16T04:29:50.385Z Has data issue: false hasContentIssue false

Blackout analysis of Mars entry missions

Published online by Cambridge University Press:  16 October 2020

Sahadeo Ramjatan*
Affiliation:
Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640Rhode-Saint-Genèse, Belgium
A. Lani
Affiliation:
Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640Rhode-Saint-Genèse, Belgium
S. Boccelli
Affiliation:
Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640Rhode-Saint-Genèse, Belgium
B. Van Hove
Affiliation:
Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640Rhode-Saint-Genèse, Belgium Royal Observatory of Belgium, Ringlaan 3, Brussels/Uccle1180, Belgium
Ö. Karatekin
Affiliation:
Royal Observatory of Belgium, Ringlaan 3, Brussels/Uccle1180, Belgium
T. Magin
Affiliation:
Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640Rhode-Saint-Genèse, Belgium
J. Thoemel
Affiliation:
University of Luxembourg, 29, avenue J.F. Kennedy, L-1855, Luxembourg
*
Email address for correspondence: ramja003@umn.edu

Abstract

A new methodology to accurately and efficiently examine the radio frequency blackout phenomenon during the hypersonic reentry process is introduced and validated. The current state-of-the-art thermochemical modelling of $\textrm {CO}_2$ flows is reviewed and one-dimensional stagnation line studies are performed in order to determine a suitable chemical mechanism for the electron density modelling. Hypersonic computational fluid dynamics (CFD) simulations are performed with a simplified chemical model including only neutral species, in order to calculate the flow field surrounding the ExoMars Schiapparelli module in flight conditions. A novel decoupled CFD approach is then applied where the calculation of the electron density is performed separately using a computationally inexpensive Lagrangian approach. Subsequently, a ray tracing algorithm is applied in order to model the propagation of electromagnetic waves in the wake flow past the ExoMars vehicle accounting for collisions between electrons and gas particles. The numerical results of the proposed novel approach for blackout analysis consisting of CFD, Lagrangian and ray tracing algorithms are in good agreement with the flight data.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. D. Jr 2006 Hypersonic and High-temperature Gas Dynamics. American Institute of Aeronautics and Astronautics.Google Scholar
Asmar, S., Esterhuizen, S., Gupta, Y., De, K., Firre, D., Edwards, C. & Ferri, F. 2017 Direct-to-earth radio link from the ExoMars Schiaparelli lander. In 14th International Planetary Probe Workshop.Google Scholar
Barth, T. 1994 Aspects of Unstructured Grids and Finitevolume Solvers for the Euler and Navier–Stokes Equations. NASA.Google Scholar
Bayle, O., Lorenzoni, L., Blancquaert, T., Langlois, S., Walloschek, T., Portigliotti, S. & Capuano, M. 2011 Exomars entry descent and landing demonstrator mission and design overview. NASA Solar System.Google Scholar
Boccelli, S., Bariselli, F., Dias, B. & Magin, T. E. 2019 Lagrangian diffusive reactor for detailed thermochemical computations of plasma flows. Plasma Sources Sci. Technol. 28 (6), 065002.CrossRefGoogle Scholar
Candler, G. V. & MacCormack, R. W. 1991 Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium. J. Thermophys. Heat Transfer 5 (3), 266273.CrossRefGoogle Scholar
Capitelli, M., Colonna, G., Giordano, D., Marraffa, L., Casavola, A., Minelli, P., Pagano, D., Pietanza, L. & Taccogna, F. 2005 High-temperature thermodynamic properties of mars-atmosphere components. J. Spacecr. Rockets 42 (6), 980989.CrossRefGoogle Scholar
Chen, F. F. 2018 Introduction to Plasma Physics and Controlled Fusion. Springer.CrossRefGoogle Scholar
Davies, K. 1965 Ionospheric Radio Propagation. US Department of Commerce, National Bureau of Standards.CrossRefGoogle Scholar
Degrez, G., Lani, A., Panesi, M., Chazot, O. & Deconinck, H. 2009 Modelling of high-enthalpy, high-Mach number flows. J. Phys. D: Appl. Phys. 42 (19), 194004.CrossRefGoogle Scholar
Delfino, A. 2004 Modeling of the antenna radiation pattern of a re-entry space vehicle in the presence of plasma. PhD thesis, University of Illinois, Chicago.Google Scholar
Evans, J. S., Schexnayder, C. J. & Grose, W. L. 1974 Effects of nonequilibrium ablation chemistry on Viking radio blackout. J. Spacecr. Rockets 11 (2), 8488.CrossRefGoogle Scholar
Fertig, M. 2012 Report and library on gas phase chemistry. Tech. Rep. SPA.2010.3.2-04. DLR, SACOMAR.Google Scholar
Giovangigli, V. 2012 Multicomponent flow modeling. Sci. China Maths 55 (2), 285308.CrossRefGoogle Scholar
Gnoffo, P. A., Gupta, R. N. & Shinn, J. L. 1989 Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA Tech. Rep. 2867.Google Scholar
Gordon, S. & McBride, B. J. 1999 Thermodynamic data to 20 000 K for monatomic gases. Tech. Rep. E-11260. NASA.Google Scholar
Gurvich, L. V., Veyts, I. V. & Alcock, C. B. 1989–1992 Thermodynamic Properties of Individual Substances. Hemisphere Publishing Corporation.Google Scholar
Hirsch, C. 2007 Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann.Google Scholar
Hirschel, E. H. 2005 Basics of Aerothermodynamics. Springer.Google Scholar
Ho, C., Golshan, N. & Kliore, A. 2002 Radio wave propagation handbook for communication on and around mars. Tech. Rep. National Aeronautics and Space Administration.Google Scholar
Holman, T. D. & Boyd, I. D. 2011 Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow. Phys. Fluids 23 (2), 027101.CrossRefGoogle Scholar
Hornung, H. G., Schramm, J. M. & Hannemann, K. 2019 Hypersonic flow over spherically blunted cone capsules for atmospheric entry. Part 1. The sharp cone and the sphere. J. Fluid Mech. 871, 10971116.CrossRefGoogle Scholar
Horton, T. E. 1964 The JPL Thermochemistry and Normal Shock Computer Program. Jet Propulsion Laboratory, California Institute of Technology.Google Scholar
Inan, U. S. & Gołkowski, M. 2010 Principles of Plasma Physics for Engineers and Scientists. Cambridge University Press.CrossRefGoogle Scholar
Jung, M., Kihara, H., Abe, K.-I. & Takahashi, Y. 2016 Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry. J. Korean Phys. Soc. 68 (11), 12951306.CrossRefGoogle Scholar
Karatekin, O., Van Hove, B., Gerbal, N., Asmar, S., Firre, D., Denis, M., Aboudan, A., Ferri, F. & AMELIA team 2018 Post-flight analysis of the radio Doppler shifts of the ExoMars Schiaparelli lander. In 15th International Planetary Probe Workshop.Google Scholar
Khraibut, A., Gai, S. L. & Neely, A. J. 2019 Numerical study of bluntness effects on laminar leading edge separation in hypersonic flow. J. Fluid. Mech. 878, 386419.CrossRefGoogle Scholar
Kimpe, D., Lani, A., Quintino, T., Poedts, S. & Vandewalle, S. 2005 The coolfluid parallel architecture. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3666, pp. 520–527.Google Scholar
Klomfass, A. & Müller, S. 1997 Calculation of stagnation streamline quantities in hypersonic blunt body flows. Shock Waves 7 (1), 1323.CrossRefGoogle Scholar
Knight, D., Chazot, O., Austin, J., Badr, M. A., Candler, G., Celik, B., Rose, D., Donelli, R., Komives, J., Lani, A., et al. 2017 Assessment of predictive capabilities for aerodynamic heating in hypersonic flow. Prog. Aerosp. Sci. 90, 3953.CrossRefGoogle Scholar
Lani, A., Quintino, T., Kimpe, D., Deconinck, H., Vandewalle, S. & Poedts, S. 2005 The COOLFluiD framework: design solutions for high performance object oriented scientific computing software. In International Conference on Computational Science, pp. 279–286. Springer.CrossRefGoogle Scholar
Lani, A., Villedieu, N., Bensassi, K., Kapa, L., Vymazal, M., Yalim, M. S. & Panesi, M. 2013 COOLFluiD: an open computational platform for multi-physics simulation and research. In AIAA 2013-2589. 21th AIAA CFD Conference, San Diego, CA.CrossRefGoogle Scholar
Lankford, D. W. 1972 A study of electron collision frequency in air mixtures and turbulent boundary. Tech. Rep. AFWL-TR-72-71. Air Force Weapons Laboratory.Google Scholar
Ling, H., Chou, R.-C. & Lee, S.-W. 1989 Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propag. 37 (2), 194205.CrossRefGoogle Scholar
Liou, M.-S. 1996 A sequel to AUSM: AUSM$^+$. J. Comput. Phys. 129 (2), 364382.CrossRefGoogle Scholar
Magin, T. 2004 A model for inductive plasma wind tunnels. PhD thesis, Université libre de Bruxelles.Google Scholar
McBride, B. J., Gordon, S. & Reno, M. A. 1993 Coefficients for calculating thermodynamic and transport properties of individual species. Tech. Rep. National Aeronautics and Space Administration.Google Scholar
McBride, B. J., Zehe, M. J. & Gordon, S. 2002 NASA Glenn coefficients for calculating thermodynamic properties of individual species. Tech. Rep. National Aeronautics and Space Administration.Google Scholar
Mehra, N., Singh, R. K. & Bera, S. C. 2015 Mitigation of communication blackout during re-entry using static magnetic field. Pr. Electromagn. Res. B 63, 161172.CrossRefGoogle Scholar
Met 2013 CFD++ User Manual. Metacomp Technologies Inc., version 14.1.Google Scholar
Millikan, R. C. & White, D. R. 1963 Systematics of vibrational relaxation. J. Chem. Phys. 39 (12), 32093213.CrossRefGoogle Scholar
Mitcheltree, R. A. & Gnoffo, P. A. 1995 Wake flow about the mars pathfinder entry vehicle. J. Spacecr. Rockets 32 (5), 771776.CrossRefGoogle Scholar
Morabito, D. D. 2002 The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres. IPN Progress Report 42-150, pp. 1–23.Google Scholar
Morabito, D., Kornfeld, R., Bruvold, K., Craig, L. & Edquist, K. 2009 The mars phoenix communications brownout during entry into the martian atmosphere. IPN Progress Report 42-179, pp. 1–20.Google Scholar
Morabito, D. D., Schratz, B., Bruvold, K., Ilott, P., Edquist, K. & Cianciolo, A. D. 2014 The mars science laboratory EDL communications brownout and blackout at UHF. IPN Progress Report 42–197, pp. 1–22.Google Scholar
Munafò, A. & Magin, T. E. 2014 Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models. Phys. Fluids 26, 097102.CrossRefGoogle Scholar
Noeding, P. 2011 Review of physico-chemical $\textrm {CO}_2$ modelling and recommendation for improvement. Tech. Rep. SPA.2010.3.2-04. DLR, SACOMAR.Google Scholar
Panesi, M. & Lani, A. 2013 Collisional radiative coarse-grain model for ionization in air. Phys. Fluids 25, 057101.CrossRefGoogle Scholar
Panesi, M., Lani, A., Magin, T., Pinna, F., Chazot, O. & Deconinck, H. 2007 Numerical investigation of the non equilibrium shock-layer around the expert vehicle. In AIAA Paper 2007-4317. 38th AIAA Plasmadynamics and Lasers Conference, Miami, Florida.CrossRefGoogle Scholar
Park, C. 1989 Nonequilibrium Hypersonic Aerothermodynamics. Wiley-Interscience.Google Scholar
Park, C. 1993 Review of chemical-kinetic problems of future NASA missions, I: earth entries. J. Thermophys. Heat Transfer 7 (3), 385398.CrossRefGoogle Scholar
Park, C., Howe, J. T., Jaffe, R. L. & Candler, G. V. 1994 Review of chemical-kinetic problems of future NASA missions, II: mars entries. J. Thermophys. Heat Transfer 8 (1), 923.CrossRefGoogle Scholar
Portigliotti, S. 2017 ExoMars 2016 Schiaparelli mission real time telemetry and post-flight results. In 14th International Planetary Probe Workshop.Google Scholar
Portigliotti, S., Dumontel, M., Capuano, M. & Lorenzoni, L. 2010 Landing site targeting and constraints for EXOMARS 2016 mission. In 7th International Planetary Probe Workshop.Google Scholar
Ramjatan, S., Magin, T., Scholz, T., Van der Haegen, V. & Thoemel, J. 2016 Blackout analysis of small cone-shaped reentry vehicles. J. Thermophys. Heat Transfer 31 (2), 269282.CrossRefGoogle Scholar
Ren, X., Yuan, J., He, B., Zhang, M. & Cai, G. 2019 Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime. J. Fluid Mech. 881, 585601.CrossRefGoogle Scholar
Rini, P., Magin, T., Degrez, G. & Fletcher, D. 2003 Numerical simulation of non-equilibrium hypersonic $\textrm {CO}_2$ flows for mars entry application. In Radiation of High Temperature Gases in Atmospheric Entry, vol. 533, pp. 171180.Google Scholar
Scoggins, J. B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B. & Magin, T. E. 2020 Mutation++: MUlticomponent Thermodynamic And Transport properties for IONized gases in C++. SoftwareX 12, 100575.CrossRefGoogle Scholar
Singh, N. & Schwartzentruber, T. E. 2017 Aerothermodynamic correlations for high-speed flow. J. Fluid Mech. 821, 421439.CrossRefGoogle Scholar
Takahashi, Y., Nakasato, R. & Oshima, N. 2016 Analysis of radio frequency blackout for a blunt-body capsule in atmospheric reentry missions. Aerospace 3 (2), 19.CrossRefGoogle Scholar
Takahashi, Y., Yamada, K. & Abe, T. 2014 a Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry. J. Spacecr. Rockets 51 (2), A32539.CrossRefGoogle Scholar
Takahashi, Y., Yamada, K. & Abe, T. 2014 b Prediction performance of blackout and plasma attenuation in atmospheric reentry demonstrator mission. J. Spacecr. Rockets 51 (6), A32880.CrossRefGoogle Scholar
tec 2013 Tecplot 360 User's Manual, release 1 edn. Tecplot Inc.Google Scholar
Tolker-Nielsen, T. 2017 EXOMARS2016-Schiaparelli Anomaly Inquiry. Tech. Rep. European Space Agency (ESA).Google Scholar
Vecchi, C., Sabbadini, M., Maggiora, R. & Siciliano, A. 2004 Modelling of antenna radiation pattern of a re-entry vehicle in presence of plasma. In Antennas and Propagation Society International Symposium, 2004. IEEE, vol. 1, pp. 181–184. IEEE.Google Scholar
Venkatakrishnan, V. 1993 On the accuracy of limiters and convergence to steady state solutions. In 31st AIAA, Aerospace Sciences Meeting and Exhibit. AIAA.CrossRefGoogle Scholar
Wright, M. J., Olejniczak, J., Edquist, K. T., Venkatapathy, E. & Hollis, B. R. 2006 Status of aerothermal modeling for current and future mars exploration missions. In 2006 IEEE Aerospace Conference. IEEE.Google Scholar
Younis, M. Y., Sohail, M. A., Rahman, T., Muhammad, Z. & Bakaul, S. R. 2011 Applications of AUSM$+$ scheme on subsonic, supersonic and hypersonic flows fields. Intl J. Aerosp. Mech. Engng 5 (1), 2127.Google Scholar