Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-22T04:56:51.604Z Has data issue: false hasContentIssue false

Collisionless kinetic theory for saltation over a rigid, bumpy bed

Published online by Cambridge University Press:  22 August 2024

Diego Berzi*
Affiliation:
Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milano, Italy
Alexandre Valance
Affiliation:
Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes I, 35042 Rennes, France
James T. Jenkins
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
*
Email address for correspondence: diego.berzi@polimi.it

Abstract

We employ the methods of statistical mechanics to obtain closures for the balance equations of momentum and fluctuation kinetic energy that govern the ballistic motion of grains rebounding at a rigid, bumpy bed that are driven by turbulent or non-turbulent shearing fluids, in the absence of mid-trajectory collisions and fluid velocity fluctuations. We obtain semi-analytical solutions for steady and fully developed saltation over horizontal beds for the vertical profiles of particle concentration and stresses and fluid and particle velocities. These compare favourably with measurements in discrete-element numerical simulations in the wide range of conditions of Earth and other planetary environments. The predictions of the particle horizontal mass flux and its scaling with the amount of particles in the system, the properties of the carrier fluid and the intensity of the shearing also agree with numerical simulations and wind-tunnel experiments.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J.E. & Francis, J.R.D. 1977 Saltation and suspension trajectories of solid grains in a water stream. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 284 (1321), 225254.Google Scholar
Ancey, C., Bigillon, F., Frey, P., Lanier, J. & Ducret, R. 2002 Saltating motion of a bead in a rapid water stream. Phys. Rev. E 66 (3), 036306.Google Scholar
Anderson, R.S., Haff, P.K., Anderson, R.S. & Haff, P.K. 1988 Simulation of eolian saltation. Science 241 (4867), 820823.Google ScholarPubMed
Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.Google Scholar
Bagnold, R.A. 1941 The Physics of Blown Sand and Desert Dunes. Methuen.Google Scholar
Beladjine, D., Ammi, M., Oger, L. & Valance, A. 2007 Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75 (6), 061305.Google Scholar
Berzi, D., Jenkins, J.T. & Valance, A. 2016 Periodic saltation over hydrodynamically rough beds: aeolian to aquatic. J. Fluid Mech. 786, 190209.Google Scholar
Berzi, D., Valance, A. & Jenkins, J.T. 2017 The threshold for continuing saltation on Earth and other solar system bodies. J. Geophys. Res.: Earth Surf. 122, 13741388.Google Scholar
Burr, D.M., Bridges, N.T., Marshall, J.R., Smith, J.K., White, B.R. & Emery, J.P. 2015 Higher-than-predicted saltation threshold wind speeds on Titan. Nature 517, 6063.Google ScholarPubMed
Chapman, S. & Cowling, T.G. 1970 The Mathematical Theory of Non-Uniform Gases, vol. 27. Cambridge University Press.Google Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45 (1), 469493.Google Scholar
Charru, F. & Mouilleron-Arnould, H. 2002 Instability of a bed of particles sheared by a viscous flow. J. Fluid Mech. 452, 303323.Google Scholar
Chassagne, R., Bonamy, C. & Chauchat, J. 2023 A frictional-collisional model for bedload transport based on kinetic theory of granular flows: discrete and continuum approaches. J. Fluid Mech. 964, 139.Google Scholar
Crassous, J., Beladjine, D. & Valance, A. 2007 Impact of a projectile on a granular medium described by a collision model. Phys. Rev. Lett. 99 (24), 248001.Google ScholarPubMed
Creyssels, M., Dupont, P., Ould El Moctar, A., Valance, A., Cantat, I., Jenkins, J.T., Pasini, J.M. & Rasmussen, K.R. 2009 Saltating particles in a turbulent boundary layer: experiment and theory. J. Fluid Mech. 625, 47.Google Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29 (1), 4765.Google Scholar
Dall'Acqua, D., Benucci, M., Corvaro, F., Leporini, M., Cocci Grifoni, R., Del Monaco, A., Di Lullo, A., Passucci, C. & Marchetti, B. 2017 Experimental results of pipeline dewatering through surfactant injection. J. Petrol. Sci. Engng 159, 542552.Google Scholar
Dallavalle, J. 1943 Micromeritics. Pitman.Google Scholar
Durán, O., Andreotti, B. & Claudin, P. 2012 Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids (1994-Present) 24, 103306.Google Scholar
Fernandez Luque, R. & Van Beek, R. 1976 Erosion and transport of bed-load sediment. J. Hydraul. Res. 14 (2), 127144.Google Scholar
Garzó, V., Tenneti, S., Subramaniam, S. & Hrenya, C.M. 2012 Enskog kinetic theory for monodisperse gas-solid flows. J. Fluid Mech. 712, 129168.Google Scholar
Greeley, R., Iversen, J., Leach, R., Marshall, J., Williams, S. & White, B. 1984 Windblown sand on venus - preliminary results of laboratory simulations. Icarus 57, 112124.Google Scholar
Guo, J. & Julien, P.Y. 2007 Buffer law and transitional roughness effect in turbulent open-channel flows. In The Fifth International Symposium on Environmental Hydraulics (ISEH V), Tempe, AZ: University of Nebraska - Lincoln, 1–6.Google Scholar
Ho, T.-D. 2012 Etude expérimentale du transport de particules dans une couche limite turbulente. Université de Rennes 1.Google Scholar
Iversen, J.D., Pollack, J.B., Greeley, R. & White, B.R. 1976 Saltation threshold on Mars: the effect of interparticle force, surface roughness, and low atmospheric density. Icarus 29 (3), 381393.Google Scholar
Iversen, J.D. & White, B.R. 1982 Saltation threshold on Earth, Mars and Venus. Sedimentology 29, 111119.Google Scholar
Jenkins, J., Cantat, I. & Valance, A. 2010 Continuum model for steady, fully developed saltation above a horizontal particle bed. Phys. Rev. E 82, 020301.Google ScholarPubMed
Jenkins, J. & Hanes, D. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J. Fluid Mech. 370, 2952.Google Scholar
Jenkins, J.T. & Valance, A. 2014 Periodic trajectories in aeolian sand transport. Phys. Fluids 26 (7), 073301.Google Scholar
Jenkins, J.T. & Valance, A. 2018 Two-phase continuum theory for windblown sand. Phys. Rev. Fluids 3 (3), 34305.Google Scholar
Kok, J.F., Parteli, E.J.R., Michaels, T.I. & Karam, D.B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75 (10), 106901.Google ScholarPubMed
Kok, J.F. & Renno, N.O. 2009 A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res.: Atmos. 114 (17), 120.Google Scholar
Lämmel, M., Dzikowski, K., Kroy, K., Oger, L. & Valance, A. 2017 Grain-scale modeling and splash parametrization for aeolian sand transport. Phys. Rev. E 95 (2), 022902.Google ScholarPubMed
Lämmel, M., Rings, D. & Kroy, K. 2012 A two-species continuum model for aeolian sand transport. New J. Phys. 14, 093037.Google Scholar
Leporini, M., Terenzi, A., Marchetti, B., Corvaro, F. & Polonara, F. 2019 On the numerical simulation of sand transport in liquid and multiphase pipelines. J. Petrol. Sci. Engng 175, 519535.Google Scholar
Niño, Y. & García, M. 1998 Experiments on saltation of sand in water. J. Hydraul. Engng 124 (10), 10141025.Google Scholar
Oger, L., Ammi, M., Valance, A. & Beladjine, D. 2005 Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17 (4), 467476.Google ScholarPubMed
Ouriemi, M., Aussillous, P. & Guazzelli, É 2009 Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows. J. Fluid Mech. 636, 295.Google Scholar
Owen, P.R. 1964 Saltation of uniform grains in air. J. Fluid Mech. 20 (2), 225242.Google Scholar
Pähtz, T., Clark, A.H., Valyrakis, M. & Durán, O. 2020 The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments. Rev. Geophys. 58 (1), e2019RG000679.Google Scholar
Pähtz, T. & Durán, O. 2020 Unification of aeolian and fluvial sediment transport rate from granular physics. Phys. Rev. Lett. 124, 168001.Google ScholarPubMed
Pähtz, T., Durán, O., Ho, T., Valance, A. & Kok, J.F. 2015 The fluctuation energy balance in non-suspended fluid-mediated particle transport. Phys. Fluids 27, 013303.Google Scholar
Pähtz, T., Kok, J.F. & Herrmann, H.J. 2012 The apparent roughness of a sand surface blown by wind from an analytical model of saltation. New J. Phys. 14, 043035.Google Scholar
Pähtz, T., Liu, Y., Xia, Y., Hu, P., He, Z. & Tholen, K. 2021 Unified model of sediment transport threshold and rate across weak and intense subaqueous bedload, windblown sand, and windblown snow. J. Geophys. Res.: Earth Surf. 126, e2020JF005859.Google Scholar
Pasini, J.M. & Jenkins, J.T. 2005 Aeolian transport with collisional suspension. Phil. Trans. Ser. A Math. Phys. Engng Sci. 363 (1832), 16251646.Google ScholarPubMed
Ralaiarisoa, J.L., Besnard, J.B., Furieri, B., Dupont, P., Ould El Moctar, A., Naaim-Bouvet, F. & Valance, A. 2020 Transition from saltation to collisional regime in windblown sand. Phys. Rev. Lett. 124 (19), 198501.Google ScholarPubMed
Saha, S. & Alam, M. 2016 Normal stress differences , their origin and constitutive relations for a sheared granular fluid. J. Fluid Mech. 795, 549580.Google Scholar
Saha, S. & Alam, M. 2017 Revisiting ignited-quenched transition and the non-Newtonian rheology of a sheared dilute gas-solid suspension. J. Fluid Mech. 833, 206246.Google Scholar
Sauermann, G., Kroy, K. & Herrmann, H.J. 2001 A continuum saltation model for sand dunes. Phys. Rev. E 64, 031305.Google ScholarPubMed
Seizilles, G., Lajeuness, E., Devauchelle, O. & Bak, M. 2014 Cross-stream diffusion in bedload transport. Phys. Fluids 26, 013302.Google Scholar
Tholen, K., Pähtz, T., Kamath, S., Parteli, E.J.R. & Kroy, K. 2023 Anomalous scaling of aeolian sand transport reveals coupling to bed rheology. Phys. Rev. Lett. 130 (5), 58204.Google ScholarPubMed
Tsuji, Y., Kawaguchi, T. & Tanaka, T. 1993 Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77 (1), 7987.Google Scholar
Valance, A. 2024 Discrete-Continuum Numerical Simulations of Saltation over a Rigid, Bumpy Bed [Data set]. Zenodo. Available at: https://doi.org/10.5281/zenodo.11264272.Google Scholar
Valance, A. & Berzi, D. 2022 Particle saltation over rigid bumpy beds in viscous shearing flows. J. Fluid Mech. 947, 128.Google Scholar
Valance, A., Rasmussen, K.R., Ould El Moctar, A. & Dupont, P. 2015 The physics of aeolian sand transport. C. R. Phys. 16 (1), 105117.Google Scholar
Werner, B. 1990 A steady-state model of wind-blown sand transport. J. Geol. 98 (1), 117.Google Scholar