Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:26:04.291Z Has data issue: false hasContentIssue false

Data-enabled prediction of streak breakdown in pressure-gradient boundary layers

Published online by Cambridge University Press:  19 July 2016

M. J. Philipp Hack
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK
Tamer A. Zaki*
Affiliation:
Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: t.zaki@jhu.edu

Abstract

Streaks in pre-transitional boundary layers are analysed and their properties are extracted from direct numerical simulation data. Streaks that induce breakdown to turbulence via secondary instability are shown to differ from the remainder of the population in various attributes. Conditionally averaged flow fields establish that they are situated farther away from the wall, and have a larger cross-sectional area and higher peak amplitude. The analysis also shows that the momentum thickness acts as a similarity parameter for the properties of the streaks. Probability density functions of the streak amplitude, area, and shear along the streaks, collapse among the various pressure gradients when plotted as a function of the momentum thickness. A prediction scheme for laminar–turbulent transition based on artificial neural networks is presented, which can identify the streaks that will eventually induce the formation of turbulent spots. In comparison to linear stability theory, the approach achieves a higher prediction accuracy at considerably lower computational cost.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.CrossRefGoogle Scholar
Baldi, P. & Hornik, K. 1989 Neural networks and principal component analysis: learning from examples without local minima. Neural Networks 2, 5358.CrossRefGoogle Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys. Fluids 12 (1), 120130.CrossRefGoogle Scholar
Cossu, C., Brandt, L., Bagheri, S. & Henningson, D. S. 2011 Secondary threshold amplitudes for sinuous streak breakdown. Phys. Fluids 23, 074103.CrossRefGoogle Scholar
Dunham, J. 1972 Predictions of boundary layer transition on turbomachinery blades. In AGARD Meeting on Boundary Layers in Turbomachines (ed. Surugue, J.), vol. AG‐164, pp. 5572. AGARD.Google Scholar
Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments on the stability of streamwise streaks in plane Poiseuille flow. Phys. Fluids 11 (4), 915930.CrossRefGoogle Scholar
Gautier, N., Aider, J.-L., Duriez, T., Noack, B. R., Segond, M. & Abel, M. 2015 Closed-loop separation control using machine learning. J. Fluid Mech. 770, 442457.CrossRefGoogle Scholar
Gostelow, J. P., Melwani, N. & Walker, G. J. 1996 Effects of streamwise pressure gradient on turbulent spot development. Trans. ASME J. Turbomach. 118, 737743.CrossRefGoogle Scholar
Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2014a Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2014b Localized streak instabilities in pressure gradient boundary layers. In 7th AIAA Theoretical Fluid Mechanics Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Hornik, K. 1991 Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251257.CrossRefGoogle Scholar
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9 (6), 17401747.CrossRefGoogle Scholar
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech. 660, 114146.CrossRefGoogle Scholar
Mans, J., de Lange, H. C. & van Steenhoven, A. A. 2007 Sinuous breakdown in a flat plate boundary layer exposed to free-stream turbulence. Phys. Fluids 19, 088101.CrossRefGoogle Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.CrossRefGoogle Scholar
Milano, M. & Koumoutsakos, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182, 126.CrossRefGoogle Scholar
Nolan, K. P. & Zaki, T. A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.CrossRefGoogle Scholar
Otsu, N. 1979 A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 6266.CrossRefGoogle Scholar
Rosenblatt, F. 1958 The Perceptron: a probabilistic model for information storage and organization of the brain. Psychol. Rev. 65 (6), 386408.CrossRefGoogle Scholar
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94, 102137.CrossRefGoogle Scholar
Rumelhart, D. & McClelland, J. 1986 Parallel Distributed Processing. MIT Press.CrossRefGoogle Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.CrossRefGoogle Scholar
Zaki, T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451473.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T. A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111147.CrossRefGoogle Scholar