Published online by Cambridge University Press: 10 April 2014
The linear stability of the horizontal pipe flow of an equal density oil–water mixture, arranged as a core–annular flow (CAF), is here reconsidered from the point of view of non-modal analysis in order to assess the effects of non-normality of the linearized Navier–Stokes operator on the transient evolution of small disturbances. The aim of this investigation is to give insight into physical situations in which poor agreement occurs between the predictions of linear modal theory and classical experiments. The results exhibit high transient amplifications of the energy of three-dimensional perturbations and, in analogy with single-fluid pipe flow, the largest amplifications arise for non-axisymmetric disturbances of vanishing axial wavenumber. Energy analysis shows that the mechanisms leading to these transient phenomena mostly occur in the annulus, occupied by the less viscous fluid. Consequently, higher values of energy amplifications are obtained by increasing the gap between the core and the pipe wall and the annular Reynolds number. It is argued that these linear transient mechanisms of disturbance amplification play a key role in explaining the transition to turbulence of CAF.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.