Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T01:21:55.692Z Has data issue: false hasContentIssue false

Downscale energy fluxes in scale-invariant oceanic internal wave turbulence

Published online by Cambridge University Press:  31 March 2021

Giovanni Dematteis*
Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY12180, USA
Yuri V. Lvov
Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY12180, USA
*
Email address for correspondence: dematg@rpi.edu

Abstract

We analyse analytically and numerically the scale-invariant stationary solution to the internal-wave kinetic equation. Our analysis of the resonant energy transfers shows that the leading-order contributions are given (i) by triads with extreme scale separation and (ii) by triads of waves that are quasi-collinear in the horizontal plane. The contributions from other types of triads is found to be subleading. We use the modified scale-invariant limit of the Garrett and Munk spectrum of internal waves to calculate the magnitude of the energy flux towards high wavenumbers in both the vertical and the horizontal directions. Our results compare favourably with the finescale parametrization of ocean mixing that was proposed in Polzin et al. (J. Phys. Oceanogr., vol. 25, issue 3, 1995, pp. 306–328).

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caillol, P. & Zeitlin, V. 2000 Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atmos. Oceans 32 (2), 81112.CrossRefGoogle Scholar
Cairns, J.L. & Williams, G.O. 1976 Internal wave observations from a midwater float. J. Geophys. Res. 81, 1943–150.CrossRefGoogle Scholar
Choi, Y., Lvov, Y.V. & Nazarenko, S. 2004 Probability densities and preservation of randomness in wave turbulence. Phys. Lett. A 332, 230238.CrossRefGoogle Scholar
Choi, Y., Lvov, Y.V. & Nazarenko, S. 2005 Joint statistics of amplitudes and phases in wave turbulence. Physica D 201, 121149.CrossRefGoogle Scholar
Davis, G., Jamin, T., Deleuze, J., Joubaud, S. & Dauxois, T. 2020 Succession of resonances to achieve internal wave turbulence. Phys. Rev. Lett. 124 (20), 204502.CrossRefGoogle ScholarPubMed
Dematteis, G. & Lvov, Y. 2020 Downscale energy fluxes in scale invariant oceanic internal wave turbulence (supplementary materials). J. Fluid Mech. https://doi.org/10.1017/jfm.2021.99.Google Scholar
Eriksen, C.C. 1985 Some characteristics of internal gravity waves in the equatorial pacific. J. Geophys. Res. 90, 72437255.CrossRefGoogle Scholar
Ferrari, R. & Wunsch, C. 2008 Ocean circulation kinetic energy: reservoirs, sources and sinks. Ann. Rev. Fluid Mech. 41, 253282.CrossRefGoogle Scholar
Garrett, C.J.R. & Munk, W.H. 1972 Space-time scales of internal waves. Geophys. Fluid Dyn. 2, 225264.CrossRefGoogle Scholar
Garrett, C.J.R & Munk, W.H. 1975 Space time scales of internal waves, progress report. J. Geophys. Res. 80, 281297.CrossRefGoogle Scholar
Garrett, C.J.R. & Munk, W.H. 1979 Internal waves in the ocean. Ann. Rev. Fluid Mech. 11, 339369.CrossRefGoogle Scholar
Hasselmann, K 1966 Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 4 (1), 132.CrossRefGoogle Scholar
Heath, M. 2002 Scientific Computing. McGraw-Hill.Google Scholar
Holloway, P., Müller, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24, 493536.Google Scholar
Liang, C.-R., Shang, X.-D., Qi, Y.-F., Chen, G.-Y. & Yu, L.-H. 2018 Assessment of fine-scale parameterizations at low latitudes of the north Pacific. Sci. Rep. 8 (1), 110.CrossRefGoogle ScholarPubMed
Lvov, Y.V., Polzin, K.L. & Tabak, E.G. 2004 Energy spectra of the ocean's internal wave field: theory and observations. Phys. Rev. Lett. 92, 128501.CrossRefGoogle ScholarPubMed
Lvov, Y.V. & Tabak, E. 2001 Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87, 168501.CrossRefGoogle ScholarPubMed
Lvov, Y.V. & Tabak, E. 2004 A Hamiltonian formulation for long internal waves. Physica D 195, 106.CrossRefGoogle Scholar
Lvov, Y.V., Tabak, E., Polzin, K.L. & Yokoyama, N. 2010 The oceanic internal wavefield: theory of scale invariant spectra. J. Phys. Oceanogr. 40, 26052623.CrossRefGoogle Scholar
Lvov, Y.V. & Yokoyama, N. 2009 Wave-wave interactions in stratified flows: direct numerical simulations. Physica D 238, 803815.CrossRefGoogle Scholar
MacKinnon, J.A., et al. 2017 Climate process team on internal wave–driven ocean mixing. Bull. Am. Meteorol. Soc. 98 (11), 24292454.CrossRefGoogle Scholar
McComas, C.H. & Bretherton, F.P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 83, 13971412.CrossRefGoogle Scholar
McComas, C.H. & Müller, P. 1981 The dynamic balance of internal waves. J. Phys. Oceanogr. 11, 970986.2.0.CO;2>CrossRefGoogle Scholar
Müller, P., Holloway, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24 (3), 493536.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Springer.CrossRefGoogle Scholar
Olbers, D.J. 1973 On the energy balance of small-scale internal waves in the deep sea. Hamburg Geophys. Einzelschr. 24, 191.Google Scholar
Olbers, D.J. 1976 Nonlinear energy transfer and the energy balance of the internal wavefield in the deep ocean. J. Fluid Mech. 74, 375399.CrossRefGoogle Scholar
Pan, Y., Arbic, B.K., Nelson, A.D., Menemenlis, D., Peltier, W.R., Xu, W. & Li, Y. 2020 Numerical investigation of mechanisms underlying oceanic internal gravity wave power-law spectra. J. Phys. Oceanogr. 50 (9), 27132733.CrossRefGoogle Scholar
Pelinovsky, E.N. & Raevsky, M.A. 1977 Weak turbulence of internal waves in the ocean. Atmos. Ocean. Phys. 13, 187193.Google Scholar
Polzin, K. 2004 A heuristic description of internal wave dynamics. J. Phys. Oceanogr. 34 (1), 214230.2.0.CO;2>CrossRefGoogle Scholar
Polzin, K.L., Garabato, A.C.N., Huussen, T.N., Sloyan, B.M. & Waterman, S. 2014 Finescale parameterizations of turbulent dissipation. J. Geophys. Res. 119 (2), 13831419.CrossRefGoogle Scholar
Polzin, K.L. & Lvov, Y.V. 2011 Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys. 49, RG4003.CrossRefGoogle Scholar
Polzin, K.L., Toole, J.M. & Schmitt, R.W. 1995 Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 25 (3), 306328.2.0.CO;2>CrossRefGoogle Scholar
von Storch, H. & Hasselmann, K. 2010 Internal waves 1971–1981. In Seventy Years of Exploration in Oceanography: A Prolonged Weekend Discussion with Walter Munk, pp. 47–50. Springer.CrossRefGoogle Scholar
Voronovich, A.G. 1979 Hamiltonian formalism for internal waves in the ocean. Izv. Atmos. Ocean. Phys. 15, 52.Google Scholar
Whalen, C.B., Talley, L.D. & MacKinnon, J.A. 2012 Spatial and temporal variability of global ocean mixing inferred from argo profiles. Geophys. Res. Lett. 39 (18).CrossRefGoogle Scholar
Wunsch, C. & Webb, S. 1979 The climatology of deep ocean internal waves. J. Phys. Oceanogr. 9, 235243.2.0.CO;2>CrossRefGoogle Scholar
Zakharov, V.E., L'vov, V.S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Springer.CrossRefGoogle Scholar
Supplementary material: File

Dematteis and Lvov supplementary material

Dematteis and Lvov supplementary material

Download Dematteis and Lvov supplementary material(File)
File 2.8 MB