Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T03:28:31.826Z Has data issue: false hasContentIssue false

The drag of a filament moving in a supported spherical bilayer

Published online by Cambridge University Press:  10 January 2024

Wenzheng Shi
Affiliation:
Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Moslem Moradi
Affiliation:
Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Ehssan Nazockdast*
Affiliation:
Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
*
Email address for correspondence: ehssan@email.unc.edu

Abstract

Many of the cell membrane's vital functions are achieved by the self-organization of the proteins and biopolymers embedded in it. The protein dynamics is in part determined by its drag. A large number of these proteins can polymerize to form filaments. In vitro studies of protein–membrane interactions often involve using rigid beads coated with lipid bilayers, as a model for the cell membrane. Motivated by this, we use slender-body theory to compute the translational and rotational resistance of a single filamentous protein embedded in the outer layer of a supported bilayer membrane and surrounded on the exterior by a Newtonian fluid. We first consider the regime where the two layers are strongly coupled through their inter-leaflet friction. We find that the drag along the parallel direction grows linearly with the filament's length and quadratically with the length for the perpendicular and rotational drag coefficients. These findings are explained using scaling arguments and by analysing the velocity fields around the moving filament. We then present and discuss the qualitative differences between the drag of a filament moving in a freely suspended bilayer and a supported membrane as a function of the membrane's inter-leaflet friction. Finally, we briefly discuss how these findings can be used in experiments to determine membrane rheology. In summary, we present a formulation that allows computation of the effects of membrane properties (its curvature, viscosity and inter-leaflet friction), and the exterior and interior three-dimensional fluids’ depth and viscosity on the drag of a rod-like/filamentous protein, all in a unified theoretical framework.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Heald, R., Johnson, A., Morgan, D. & Raff, M. 2022 Molecular Biology of the Cell, 7th edn, vol. 1. W.W. Norton & Company.Google Scholar
Amador, G.J., Van Dijk, D., Kieffer, R., Aubin-Tam, M.-E. & Tam, D. 2021 Hydrodynamic shear dissipation and transmission in lipid bilayers. Proc. Natl Acad. Sci. USA 118 (21), e2100156118.CrossRefGoogle ScholarPubMed
Baranova, N., Radler, P., Hernández-Rocamora, V.M., Alfonso, C., López-Pelegrín, M., Rivas, G., Vollmer, W. & Loose, M. 2020 Diffusion and capture permits dynamic coupling between treadmilling FTSZ filaments and cell division proteins. Nat. Microbiol. 5 (3), 407417.CrossRefGoogle ScholarPubMed
Bayerl, T.M. & Bloom, M. 1990 Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2 h-nuclear magnetic resonance. Biophys. J. 58 (2), 357362.CrossRefGoogle Scholar
Block, S. 2018 Brownian motion at lipid membranes: a comparison of hydrodynamic models describing and experiments quantifying diffusion within lipid bilayers. Biomolecules 8 (2), 30.CrossRefGoogle ScholarPubMed
Blosser, M.C., Honerkamp-Smith, A.R., Han, T., Haataja, M. & Keller, S.L. 2015 Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters. Biophys. J. 109 (11), 23172327.CrossRefGoogle ScholarPubMed
Botan, A., Joly, L., Fillot, N. & Loison, C. 2015 Mixed mechanism of lubrication by lipid bilayer stacks. Langmuir 31 (44), 1219712202.CrossRefGoogle ScholarPubMed
Bridges, A.A., Zhang, H., Mehta, S.B., Occhipinti, P., Tani, T. & Gladfelter, A.S. 2014 Septin assemblies form by diffusion-driven annealing on membranes. Proc. Natl Acad. Sci. USA 111 (6), 21462151.CrossRefGoogle ScholarPubMed
Brinkman, H.C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1), 2734.CrossRefGoogle Scholar
Camley, B.A. & Brown, F.L.H. 2013 Diffusion of complex objects embedded in free and supported lipid bilayer membranes: role of shape anisotropy and leaflet structure. Soft Matt. 9 (19), 47674779.CrossRefGoogle Scholar
Cannon, K.S., Woods, B.L., Crutchley, J.M. & Gladfelter, A.S. 2019 An amphipathic helix enables septins to sense micrometer-scale membrane curvature. J. Cell Biol. 218 (4), 11281137.CrossRefGoogle ScholarPubMed
Evans, E. & Sackmann, E. 1988 Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate. J. Fluid Mech. 194, 553561.CrossRefGoogle Scholar
Fischer, T.M. 2004 The drag on needles moving in a Langmuir monolayer. J. Fluid Mech. 498, 123137.CrossRefGoogle Scholar
Gradshteyn, I.S. & Ryzhik, I.M. 2014 Table of Integrals, Series, and Products. Academic Press.Google Scholar
Henle, M.L. & Levine, A.J. 2010 Hydrodynamics in curved membranes: the effect of geometry on particulate mobility. Phys. Rev. E 81 (1), 011905.CrossRefGoogle ScholarPubMed
Honerkamp-Smith, A.R. 2023 Forces and flows at cell surfaces. J. Membr. Biol. 256, 331340.CrossRefGoogle ScholarPubMed
Hughes, B.D., Pailthorpe, B.A. & White, L.R. 1981 The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349372.CrossRefGoogle Scholar
Itoh, T. & Tsujita, K. 2023 Exploring membrane mechanics: the role of membrane-cortex attachment in cell dynamics. Curr. Opin. Cell Biol. 81, 102173.CrossRefGoogle ScholarPubMed
Jain, S. & Samanta, R. 2023 Force dipole interactions in tubular fluid membranes. arXiv:2303.12061.CrossRefGoogle Scholar
Jiao, F., Cannon, K.S., Lin, Y.-C., Gladfelter, A.S. & Scheuring, S. 2020 The hierarchical assembly of septins revealed by high-speed AFM. Nat. Commun. 11 (1), 5062.CrossRefGoogle ScholarPubMed
Johnson, S.J., Bayerl, T.M., McDermott, D.C., Adam, G.W., Rennie, A.R., Thomas, R.K. & Sackmann, E. 1991 Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys. J. 59 (2), 289294.CrossRefGoogle ScholarPubMed
Jonsson, P., Beech, J.P., Tegenfeldt, J.O. & Hook, F. 2009 Mechanical behavior of a supported lipid bilayer under external shear forces. Langmuir 25 (11), 62796286.CrossRefGoogle ScholarPubMed
Khmelinskaia, A., Franquelim, H.G., Yaadav, R., Petrov, E.P. & Schwille, P. 2021 Membrane-mediated self-organization of rod-like dna origami on supported lipid bilayers. Adv. Mater. Interfaces 8 (24), 2101094.CrossRefGoogle Scholar
Kim, K., Choi, S.Q., Zasadzinski, J.A. & Squires, T.M. 2011 Interfacial microrheology of dppc monolayers at the air–water interface. Soft Matt. 7 (17), 77827789.CrossRefGoogle Scholar
Klopp, C., Stannarius, R. & Eremin, A. 2017 Brownian dynamics of elongated particles in a quasi-two-dimensional isotropic liquid. Phys. Rev. Fluids 2 (12), 124202.CrossRefGoogle Scholar
Kohr, M., Sekhar, G.P.R. & Blake, J.R. 2008 Green's function of the Brinkman equation in a 2d anisotropic case. IMA J. Appl. Maths 73 (2), 374392.CrossRefGoogle Scholar
Lee, M.H., Reich, D.H., Stebe, K.J. & Leheny, R.L. 2010 Combined passive and active microrheology study of protein-layer formation at an air- water interface. Langmuir 26 (4), 26502658.CrossRefGoogle ScholarPubMed
Levine, A.J., Liverpool, T.B. & MacKintosh, F.C. 2004 Dynamics of rigid and flexible extended bodies in viscous films and membranes. Phys. Rev. Lett. 93 (3), 038102.CrossRefGoogle ScholarPubMed
Manikantan, H. 2020 Tunable collective dynamics of active inclusions in viscous membranes. Phys. Rev. Lett. 125 (26), 268101.CrossRefGoogle ScholarPubMed
Molaei, M., Chisholm, N.G., Deng, J., Crocker, J.C. & Stebe, K.J. 2021 Interfacial flow around Brownian colloids. Phys. Rev. Lett. 126 (22), 228003.CrossRefGoogle ScholarPubMed
Morozov, A. & Spagnolie, S.E. 2015 Introduction to complex fluids. In Complex Fluids in Biological Systems: Experiment, Theory, and Computation (ed. S.E. Spagnolie), pp. 3–52. Springer.CrossRefGoogle Scholar
Nagao, M., Kelley, E.G., Faraone, A., Saito, M., Yoda, Y., Kurokuzu, M., Takata, S., Seto, M. & Butler, P.D. 2021 Relationship between viscosity and acyl tail dynamics in lipid bilayers. Phys. Rev. Lett. 127 (7), 078102.CrossRefGoogle Scholar
den Otter, W.K. & Shkulipa, S.A. 2007 Intermonolayer friction and surface shear viscosity of lipid bilayer membranes. Biophys. J. 93 (2), 423433.CrossRefGoogle ScholarPubMed
Pott, T. & Méléard, P. 2002 The dynamics of vesicle thermal fluctuations is controlled by intermonolayer friction. Europhys. Lett. 59 (1), 87.CrossRefGoogle Scholar
Prasad, V., Koehler, S.A. & Weeks, E.R. 2006 Two-particle microrheology of quasi-2d viscous systems. Phys. Rev. Lett. 97 (17), 176001.CrossRefGoogle ScholarPubMed
Sackmann, E. 1996 Supported membranes: scientific and practical applications. Science 271 (5245), 4348.CrossRefGoogle ScholarPubMed
Saffman, P.G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73 (4), 593602.CrossRefGoogle Scholar
Saffman, P.G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72 (8), 31113113.CrossRefGoogle ScholarPubMed
Sakuma, Y., Kawakatsu, T., Taniguchi, T. & Imai, M. 2020 Viscosity landscape of phase-separated lipid membrane estimated from fluid velocity field. Biophys. J. 118 (7), 15761587.CrossRefGoogle ScholarPubMed
Samanta, R. & Oppenheimer, N. 2021 Vortex flows and streamline topology in curved biological membranes. Phys. Fluids 33 (5), 051906.CrossRefGoogle Scholar
Shi, W., Cannon, K.S., Curtis, B.N., Edelmaier, C., Gladfelter, A.S. & Nazockdast, E. 2023 Curvature sensing as an emergent property of multiscale assembly of septins. Proc. Natl Acad. Sci. USA 120 (6), e2208253120.CrossRefGoogle ScholarPubMed
Shi, W., Moradi, M. & Nazockdast, E. 2022 Hydrodynamics of a single filament moving in a spherical membrane. Phys. Rev. Fluids 7 (8), 084004.CrossRefGoogle Scholar
Stefaniu, C., Brezesinski, G. & Möhwald, H. 2014 Langmuir monolayers as models to study processes at membrane surfaces. Adv. Colloid Interface Sci. 208, 197213.CrossRefGoogle ScholarPubMed
Stone, H.A. & Ajdari, A. 1998 Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369, 151173.CrossRefGoogle Scholar
Stone, H.A. & Masoud, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494505.CrossRefGoogle Scholar
Walde, P. 2010 Building artificial cells and protocell models: experimental approaches with lipid vesicles. BioEssays 32 (4), 296303.CrossRefGoogle ScholarPubMed
Zgorski, A., Pastor, R.W. & Lyman, E. 2019 Surface shear viscosity and interleaflet friction from nonequilibrium simulations of lipid bilayers. J. Chem. Theory Comput. 15 (11), 64716481.CrossRefGoogle ScholarPubMed
Zhou, Z., Vlahovska, P.M. & Miksis, M.J. 2022 Drag force on spherical particles trapped at a liquid interface. Phys. Rev. Fluids 7 (12), 124001.CrossRefGoogle Scholar