Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T08:42:47.575Z Has data issue: false hasContentIssue false

Drift velocity of spatially decaying waves in a two-layer viscous system

Published online by Cambridge University Press:  26 April 2006

Ismael Piedra-Cueva
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, Institut de Mécanique de Grenoble; BP 53, 38041 Grenoble Cedex 9, France

Abstract

This paper analyses the mass transport velocity in a two-layer system induced by the action of progressive waves. First the movement inside the two layers is obtained. Next the mass transport of spatially decaying waves is calculated by solving the momentum and mass conservation equations in the Lagrangian coordinate system. Two different physical situations are analysed: the first is waves in a closed channel and the second is waves in an unbounded domain, where the steady-state mass flux may be non-zero. The influence of the viscous properties of the lower layer on the mass transport in both layers is studied. Comparison with the experiments of Sakakiyama & Bijker (1989) in a water-mud system shows good agreement. The results show that the mass transport velocity can be quite different from the velocity given by the rigid bed theory, depending on the physical properties of the lower layer.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. G. & McIntre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609645.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Chang, M. S. 1969 Mass transport in deep-water long-crested random gravity waves. J. Geophys. Res. 74, 15151537.Google Scholar
Craik, A. D. 1982 The drift velocity of water waves. J. Fluid Mech. 116, 187205.Google Scholar
R. Dalrymple & Liu, P. L.-F. 1978 Water waves over soft mud: A two layer fluid model. J. Phys. Oceanogr. 8, 11211131.Google Scholar
Dore, B. D. 1970 Mass transport in a layered fluid system. J. Fluid Mech. 40, 113126.Google Scholar
Dore, B. D. 1973 On mass transport induced by interfacial oscillations at single frequency. Proc. Camb. Phil. Soc. 74, 333347.Google Scholar
Foda, M. A., Hunt, J. R. & Chou, H.-T. 1993 A non-linear model for the fluidization of marine mud by waves. J. Geophys. Res. 98, 70397047.Google Scholar
Grimshaw, R. 1981 Mean flows generated by a progressing water wave packet. J. Austral. Math. Society. B 22, 318347.Google Scholar
Huang, N. E. 1970 Mass transport induced by wave motion. J. Mar. Res. 28, 3550.Google Scholar
Hunt, J. N. 1964 The viscous damping of gravity waves in shallow water. La Houille Blanche 6, 685691.Google Scholar
Iskandarani, M. & Liu, P. L.-F. 1991 Mass transport in two-dimensional water waves. J. Fluid Mech. 231, 395415.Google Scholar
Kravtchenko, J. & Daubert, A. 1957 La houle a trajectoires fermés en profondeur fini. La Houille Blanche 3, 408429.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 67, 535581.Google Scholar
Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves. World Scientific.
Miche, M. 1944 Mouvements ondulatoires de la mer en profondeur constante ou decroissent. Ann. Ponts Chaussees, 2578.
Migniot, C. 1968 Etude des propiétés physiques de différents sédiments trés fins et de leurs comportement sous des actions hydrodinamiques. La Houille Blanche 7, 591620.Google Scholar
Piedra-Cueva, I. 1993 On the response of a muddy bottom to surface water waves. J. Hydraul. Res. 31, 681697.Google Scholar
Pierson, W. J. 1962 Perturbation analysis of the Navier-Stokes equation in Lagrangian form with selected linear solutions. J. Geophys. Res. 67, 31513160.Google Scholar
Sakakiyama, T. & Bijker, E. 1989 Mass transport velocity in a mud layer due to progressive waves. J. Port, Coastal Ocean Engng 115, 614632.Google Scholar
Shibayama, T., Takikawa, H. & Horikawa, K. 1986 Mud mass transport due to waves. Coastal Engng Japan 29, 151161.Google Scholar
Swan, C. & Sleath, J. F. A. 1990 A second approximation to the time-mean Lagrangian drift beneath a series of progressive gravity waves. Ocean Engng 17, 6579.Google Scholar
Tsuruya, H., Nakano, S. & Takahama, J. 1987 Interactions between surface waves and a multilayered mud bed. Rep. Port Harbour Res. Inst. (Japan) 26 (5), 137173.Google Scholar
Ünlüata, U. & Mei, C. C. 1970 Mass transport in water waves. J. Geophys. Res. 75, 76117618.Google Scholar