Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-20T09:16:03.765Z Has data issue: false hasContentIssue false

Effect of pitch on nonlinear dynamics of helical vortex disturbed by long-wave instability

Published online by Cambridge University Press:  20 August 2024

Yuji Hattori*
Affiliation:
Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
Akihiro Hirano
Affiliation:
Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
*
Email address for correspondence: hattori@ifs.tohoku.ac.jp

Abstract

The nonlinear dynamics of a helical vortex disturbed by a long-wave-instability mode is studied by direct numerical simulation. Vortex reconnection or self-reconnection of the helical vortex is shown to play a crucial role depending on the pitch of the helical vortex. For the larger pitch, a vortex ring is created after the vortex reconnection; it detaches from the remaining helical vortex, whose pitch is doubled. A vortex ring is also created for the smaller pitch; however, it forms a linked system with the remaining vortex. The topological constraint due to this linkage forces strong interaction between the different parts of the helical vortex, leading to turbulent transition.

Type
JFM Rapids
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A., Castillo-Castellanos, A. & Leweke, T. 2023 Simplified model for helical vortex dynamics in the wake of an asymmetric rotor. Flow 3, E5.CrossRefGoogle Scholar
Alekseenko, S.V., Kuibin, P.A., Shtork, S.I., Skripkin, S.G. & Tsoy, M.A. 2016 Vortex reconnection in a swirling flow. JETP Lett. 103, 455459.CrossRefGoogle Scholar
Blanco-Rodríguez, F.J. & Le Dizès, S. 2016 Elliptic instability of a curved Batchelor vortex. J. Fluid Mech. 804, 224247.CrossRefGoogle Scholar
Blanco-Rodríguez, F.J. & Le Dizès, S. 2017 Curvature instability of a curved Batchelor vortex. J. Fluid Mech. 814, 397415.CrossRefGoogle Scholar
Crow, S.C. 1970 Stability theory of a pair of trailing vortices. AAIA J. 8, 21722179.CrossRefGoogle Scholar
Delbende, I., Rossi, M. & Daube, O. 2012 DNS of flows with helical symmetry. Theor. Comput. Fluid Dyn. 26, 141160.CrossRefGoogle Scholar
Fukumoto, Y. & Hattori, Y. 2005 Curvature instability of a vortex ring. J. Fluid Mech. 526, 77115.CrossRefGoogle Scholar
Gupta, B.P. & Loewy, R.G. 1974 Theoretical analysis of the aerodynamics stability of multiple, interdigitated helical vortices. AIAA J. 12, 13811387.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2003 Short-wavelength stability analysis of thin vortex rings. Phys. Fluids 15, 31513163.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2009 Short-wavelength stability analysis of a helical vortex tube. Phys. Fluids 21, 014104.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2010 Short-wave stability of a helical vortex tube: the effect of torsion on the curvature instability. Theor. Comput. Fluid Dyn. 24, 363368.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2011 Erratum: short-wavelength stability analysis of a helical vortex tube. Phys. Fluids 23, 049901.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2012 Effects of axial flow on the stability of a helical vortex tube. Phys. Fluids 24, 054102.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2014 Modal stability analysis of a helical vortex tube with axial flow. J. Fluid Mech. 738, 222249.CrossRefGoogle Scholar
Hattori, Y., Blanco-Rodríguez, F.J. & Le Dizès, S. 2019 Numerical stability analysis of a vortex ring with swirl. J. Fluid Mech. 878, 536.CrossRefGoogle Scholar
Kerswell, R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Lee, J.C.Y. & Fields, M.J. 2021 An overview of wind-energy-production prediction bias, losses, and uncertainties. Wind Energy Sci. 6, 311365.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite-difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.CrossRefGoogle Scholar
Oshima, Y. 1978 The game of passing-through of a pair of vortex rings. J. Phys. Soc. Japan 45, 660664.CrossRefGoogle Scholar
Ramos-García, N., Abraham, A., Leweke, T. & Sørensen, J.N. 2023 Multi-fidelity vortex simulations of rotor flows: validation against detailed wake measurements. Comput. Fluids 255, 105790.CrossRefGoogle Scholar
Ricca, R.L. 1994 The effect of torsion on the motion of a helical vortex filament. J. Fluid Mech. 273, 241259.CrossRefGoogle Scholar
Quaranta, H.U., Bolnot, H. & Leweke, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687716.CrossRefGoogle Scholar
Quaranta, H.U., Brynjell-Rahkola, M., Leweke, T. & Henningson, D.S. 2019 Local and global pairing instabilities of two interlaced helical vortices. J. Fluid Mech. 863, 927955.CrossRefGoogle Scholar
Selçuk, C., Delbende, I. & Rossi, M. 2017 Helical vortices: quasiequilibrium states and their time evolution. Phys. Rev. Fluids 2, 084701.CrossRefGoogle Scholar
Selçuk, C., Delbende, I. & Rossi, M. 2018 Helical vortices: linear stability analysis and nonlinear dynamics. Fluid Dyn. Res. 50, 011411.CrossRefGoogle Scholar
Widnall, S.E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54, 641663.CrossRefGoogle Scholar
Supplementary material: File

Hattori and Hirano supplementary movie 1

Time evolution of helical vortex with L/R = 0.3.
Download Hattori and Hirano supplementary movie 1(File)
File 4.3 MB
Supplementary material: File

Hattori and Hirano supplementary movie 2

Time evolution of helical vortex with L/R = 0.2.
Download Hattori and Hirano supplementary movie 2(File)
File 9.3 MB