Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-12T22:17:26.485Z Has data issue: false hasContentIssue false

The effect of shear and stratification on the stability of a rotating fluid layer

Published online by Cambridge University Press:  29 March 2006

A. R. Brunsvold
Affiliation:
Department of Mechanical Engineering, The University of Michigan Present address: Argonne National Laboratory, Argonne, Illinois.
C. M. Vest
Affiliation:
Department of Mechanical Engineering, The University of Michigan

Abstract

The stability of a layer of Newtonian fluid confined between two horizontal disks which rotate with different angular velocities is studied. Both isothermal and adversely stratified fluids are considered for small shear rates at low to moderate Taylor numbers. The linearized formulation of the stability problem is given a finite-difference representation, and the resulting algebraic eigenvalue problem is solved using efficient numerical techniques. The critical parameters and disturbance orientations are determined as a function of the Taylor number for the isothermal flow, and for the stratified flow for Prandtl numbers of 0·025, 1·0 and 6·0.

At high Taylor numbers, the unstratified fluid flows in Ekman-like layers near the disks, and two modes of instability are noted: the viscous-type ‘class A’ travelling wave, whose existence depends on Coriolis forces, and the inflexional ‘class B’ mode, which is nearly stationary with respect to the nearer bounding disk. As the Taylor number is decreased, the Ekman layers coalesce to form a fully developed flow. In this regime there is a Taylor number below which the class A waves are always damped. The critical Reynolds number for the class B waves increases rapidly as the Taylor number approaches zero.

For Prandtl numbers of 1·0 and 6·0, the adversely stratified flow exhibits two distinct types of instability: convective and dynamical. At low Reynolds numbers, a stationary mode associated with Bénard convection in a rotating fluid is critical. It is stabilized and given orientation by the shear. At higher Reynolds numbers, the critical mode is a travelling wave of the nature of either the class A or class B waves, depending upon the Taylor number. For a Prandtl number of 0·025, the critical mode resembles oscillatory convection at small Reynolds numbers and a class A wave at larger shear rates.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1951 Quart. J. Mech. Appl. Math. 4, 29.
Brown, R. A. 1972 J. Atmos. Sci. 29, 850.
Brunsvold, A. R. 1972 Ph.D. dissertation, The University of Michigan.
Brunt, D. 1951 In Compendium of Meteorology, p. 1255. Am. Meteor. Soc.
Chandra, K. 1938 Proc. Roy. Soc. A, 164, 231.
Chandrasekhar, S. 1953 Proc. Roy. Soc. A, 217, 306.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Chandrasekhar, S. & Elbert, D. D. 1955 Proc. Roy. Soc. A, 231, 198.
Deardorff, J. W. 1963 J. Fluid Mech. 15, 623.
Deardorff, J. W. 1965 Phys. Fluids, 8, 1027.
Etling, D. 1971 Beitr. Phys. Atmos. 44, 168.
Faller, A. J. 1963 J. Fluid Mech. 15, 560.
Faller, A. J. & Kaylor, R. 1966 J. Atmos. Sci. 23, 466.
Faller, A. J. & Kaylor, R. 1967 Phys. Fluids Suppl. 10, S212.
Gallager, A. P. & Mercer, A. McD. 1962 J. Fluid Mech. 13, 91.
Gallager, A. P. & Mercer, A. McD. 1965 Proc. Roy. Soc. A, 286, 117.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Gregory, N., Stuart, J. T. & Walker, W. S. 1955 Phil. Trans. Roy. Soc. A, 248, 155.
Grohne, D. 1954 Z. angew. Math. Mech. 35, 344.
Homsey, G. M. & Hudson, J. L. 1971a J. Fluid Mech. 45, 353.
Homsey, G. M. & Hudson, J. L. 1971b J. Fluid Mech. 48, 605.
Hopf, L. 1914 Ann. Phys., Lpz. 44, 1.
Ingersoll, A. P. 1966a Phys. Fluids, 9, 862.
Ingersoll, A. P. 1966b J. Fluid Mech. 25, 209.
Kaylor, R. & Faller, A. J. 1972 J. Atmos. Sci. 29, 497.
Kuo, H. L. 1963 Phys. Fluids 6, 195.
Lance, G. N. & Rogers, M. H. 1962 Proc. Roy. Soc. A, 266, 109.
Lilly, D. K. 1966 J. Atmos. Sci. 23, 481.
Martin, R. S. & Wilkinson, J. H. 1968a Numer. Math. 12, 349.
Martin, R. S. & Wilkinson, J. H. 1968b Numer. Math. 12, 369.
Moler, C. B. 1971 Stanford Comp. Sci. Rep. STAN-CS-71-196.
Niiler, P. P. & Bisshopp, F. E. 1965 J. Fluid Mech. 22, 753.
Parlett, B. N. & Reinsch, C. 1969 Numer. Math. 13, 293.
Picha, K. G. & Eckert, E. R. G. 1958 In Proc. 3rd U.S. Nat. Cong. on Appl. Mech. p. 791.
Rossby, H. T. 1969 J. Fluid Mech. 36, 309.
Schultz-Grunow, F. 1935 Z. angew. Math. Mech. 15, 191.
Stewartson, K. 1953 Proc. Camb. Phil. Soc. 49, 333.
Tatro, P. R. & Mollo-Christensen, E. L. 1967 J. Fluid Mech. 28, 531.
Veronis, G. 1959 J. Fluid Mech. 5, 401.
Veronis, G. 1966 J. Fluid Mech. 24, 545.
Von Kármán, T. 1921 Z. angew. Math. Mech. 1, 233.
Wasow, W. 1953 J. Res. Nat. Bur. Stand. 51, 195.
Wilkinson, J. H. 1965 The Algebraic Eigenvalue Problem. Oxford University Press.
Zondek, B. & Thomas, L. H. 1953 Phys. Rev. 90, 738.