Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T15:58:36.577Z Has data issue: false hasContentIssue false

Effect of the dynamic slip boundary condition on the near-wall turbulent boundary layer

Published online by Cambridge University Press:  24 August 2020

Cong Wang
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
Morteza Gharib*
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125, USA
*
Email address for correspondence: mgharib@caltech.edu

Abstract

The manipulation of near-wall turbulent structures in a turbulent boundary layer (TBL) is an effective way to reduce the turbulent frictional drag. This paper demonstrates the effectiveness of a novel approach for the manipulation of near-wall structures in a TBL with Reynolds number ($Re_\theta$) set to 1200. The manipulation is achieved by employing a sustainable wall-attached air-film array. The static and dynamic interface configuration of the air film can be modulated, which generates a dynamic slip boundary condition. For modulation frequencies within the TBL receptivity, this approach shows that it can effectively modify the TBL near-wall velocity/vorticity field. For a typical modulation frequency of 50 Hz, the near-wall mean streamwise velocity decreases and the wall-normal velocity increases when compared to the canonical flat plate TBL. The mean transverse vorticity is suppressed in the near-wall region and its peak is ‘pushed’ outward away from the wall. In the vicinity of modulated air-film array, the phase-locked velocity/vorticity field demonstrates harmonic motions such as a Stokes-type oscillatory motion. The distribution of shear stresses indicates suppressed momentum transfer toward the wall. Estimation of the wall skin friction via the Clauser chart method indicates a reduction of the wall skin friction up to 40 % in the downstream region of the air-film array. A control volume analysis shows that the TBL gains a significant amount of momentum over the oscillating air films, which suggests that the oscillating air film acts like a source of momentum. This pumping effect could potentially explain the observed wall skin friction reduction effect.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press, p. 635.CrossRefGoogle Scholar
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26 (8), 085108.CrossRefGoogle Scholar
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183203.CrossRefGoogle Scholar
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96 (6), 066001.CrossRefGoogle Scholar
Choi, K.-S., DeBisschop, J.-R. & Clayton, B. R. 1998 Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36 (7), 11571163.CrossRefGoogle Scholar
Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M. 1997 Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A 453 (1965), 22292240.CrossRefGoogle Scholar
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.CrossRefGoogle Scholar
De Graaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Fukuda, K., Tokunaga, J., Nobunaga, T., Nakatani, T., Iwasaki, T. & Kunitake, Y. 2000 Frictional drag reduction with air lubricant over a super-water-repellent surface. J. Mar. Sci. Technol. 5 (3), 123130.CrossRefGoogle Scholar
Golovin, K. B., Gose, J. W., Perlin, M., Ceccio, S. L. & Tuteja, A. 2016 Bioinspired surfaces for turbulent drag reduction. Phil. Trans. R. Soc. A 374 (2073), 20160189.CrossRefGoogle ScholarPubMed
Gad-el Hak, M. 2002 Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38 (1), 7799.CrossRefGoogle Scholar
Hoepffner, J. & Fukagata, K. 2009 Pumping or drag reduction?. J. Fluid Mech. 635, 171187.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Jung, W.-J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.CrossRefGoogle Scholar
Kametani, Y. & Fukagata, K. 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154172.CrossRefGoogle Scholar
Karniadakis, G. E. & Choi, K.-S. 2003 Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35 (1), 4562.CrossRefGoogle Scholar
Kasagi, N., Suzuki, Y. & Fukagata, K. 2009 Microelectromechanical systems–based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231251.CrossRefGoogle Scholar
Kramer, M. O. 1962 Boundary layer stabilization by distributed damping. Naval Engrs J. 74 (2), 341348.CrossRefGoogle Scholar
Le, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.CrossRefGoogle Scholar
Ling, H., Srinivasan, S., Golovin, K., McKinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.CrossRefGoogle Scholar
Min, T., Kang, S. M., Speyer, J. L. & Kim, J. 2006 Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309318.CrossRefGoogle Scholar
Nakanishi, R., Mamori, H. & Fukagata, K. 2012 Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow 35, 152159.CrossRefGoogle Scholar
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4.CrossRefGoogle Scholar
Rinderknecht, D., Hickerson, A. I. & Gharib, M. 2005 A valveless micro impedance pump driven by electromagnetic actuation. J. Micromech. Microengng 15 (4), 861.CrossRefGoogle Scholar
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air-and liquid-impregnated surfaces. Phys. Fluids 28 (1), 015103.CrossRefGoogle Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.CrossRefGoogle Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2015 Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.CrossRefGoogle Scholar
Seo, J. & Mani, A. 2016 On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 28 (2), 025110.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Wang, C. 2019 On the manipulation of a turbulent boundary layer by unsteady boundary conditions. PhD thesis, California Institute of Technology.Google Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar