Article contents
The efficiency of pulsed-jet propulsion
Published online by Cambridge University Press: 26 January 2011
Abstract
Nature is often an inspiration for scientists and especially so in fluid dynamics. We observe and admire the beauty of birds and fish as they move through the air and water, and wonder how these forms of locomotion evolved and whether they are optimised for efficiency. A common feature of this locomotion is that the thrust is generated by the flapping of a wing or fin, creating an unsteady flow. Other less readily observed animals such as salps or squid eject a pulsed jet, raising the question of whether there is an advantage of this unsteady forcing over a steady jet. This is the question addressed by Ruiz, Whittlesey & Dabiri (J. Fluid Mech., this issue, vol. 668, 2011, pp. 5–32) who have carried out detailed flow and power-consumption measurements with a self-propelled vehicle in water. The vehicle has a novel propulsion mechanism that allows a comparison of the efficiency of a pulsed and steady jet to be compared. They show that significant increases in efficiency are possible with the pulsed jet, even allowing for the additional power needed to create the pulsed flow. They also show that vortex rings are produced by the unsteady jet and that the additional entrainment of ambient fluid into the ring and the higher pressure at the front of the ring are the cause of this increased efficiency.
- Type
- Focus on Fluids
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
- 13
- Cited by