Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T21:12:11.578Z Has data issue: false hasContentIssue false

Electrophoresis in dilute polymer solutions

Published online by Cambridge University Press:  05 December 2019

Gaojin Li
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY14853, USA
Donald L. Koch*
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY14853, USA
*
Email address for correspondence: dlk15@cornell.edu

Abstract

We analyse the electrophoresis of a weakly charged particle with a thin double layer in a dilute polymer solution. The particle velocity in polymer solutions modelled with different constitutive equations is calculated using a regular perturbation in the polymer concentration and the generalized reciprocal theorem. The analysis shows that the polymer is strongly stretched in two regions, the birefringent strand and the high-shear region inside the double layer. The electrophoretic velocity of the particle always decreases with the addition of polymers due to both increased viscosity and fluid elasticity. At a small Weissenberg number ($Wi$), which is the product of the polymer relaxation time and the shear rate, the polymers inside the double layer contribute to most of the velocity reduction by increasing the fluid viscosity. With increasing $Wi$, viscoelasticity decreases and shear thinning increases the particle velocity. Polymer elasticity alters the fluid velocity disturbance outside the double layer from that of a neutral squirmer to a puller-type squirmer. At high $Wi$, the strong extensional stress inside the birefringent strand downstream of the particle dominates the velocity reduction. The scaling of the birefringent strand is used to estimate the particle velocity.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, A. M., Alves, M. A. & Pinho, F. T. 2009 Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech. 159 (1–3), 5063.CrossRefGoogle Scholar
Ardekani, A. M., Rangel, R. H. & Joseph, D. D. 2007 Motion of a sphere normal to a wall in a second-order fluid. J. Fluid Mech. 587, 163172.CrossRefGoogle Scholar
Ardekani, A. M., Rangel, R. H. & Joseph, D. D. 2008 Two spheres in a free stream of a second-order fluid. Phys. Fluids 20 (6), 063101.CrossRefGoogle Scholar
Arigo, M. T., Rajagopalan, D., Shapley, N. & McKinley, G. H. 1995 The sedimentation of a sphere through an elastic fluid. Part 1. Steady motion. J. Non-Newtonian Fluid Mech. 60 (2-3), 225257.CrossRefGoogle Scholar
Barron, A. E., Soane, D. S. & Blanch, H. W. 1993 Capillary electrophoresis of DNA in uncross-linked polymer solutions. J. Chromatogr. A 652 (1), 316.CrossRefGoogle ScholarPubMed
Becherer, P., van Saarloos, W. & Morozov, A. N. 2008 Scaling of singular structures in extensional flow of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 153 (2-3), 183190.CrossRefGoogle Scholar
Becherer, P., van Saarloos, W. & Morozov, A. N. 2009 Stress singularities and the formation of birefringent strands in stagnation flows of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 157 (1), 126132.CrossRefGoogle Scholar
Besra, L. & Liu, M. 2007 A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52 (1), 161.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. Wiley.Google Scholar
Bird, R. B. & Wiest, J. M. 1995 Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27 (1), 169193.CrossRefGoogle Scholar
Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Chang, H.-C. & Yeo, L. Y. 2010 Electrokinetically driven microfluidics and nanofluidics. Cambridge University Press.Google Scholar
Chilcott, M. D. & Rallison, J. M. 1988 Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381432.CrossRefGoogle Scholar
Cox, R. G. 1965 The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23 (4), 625643.CrossRefGoogle Scholar
Datt, C. & Elfring, G. J. 2019 A note on higher-order perturbative corrections to squirming speed in weakly viscoelastic fluids. J. Non-Newtonian Fluid Mech. 270, 5155.CrossRefGoogle Scholar
Datt, C., Natale, G., Hatzikiriakos, S. G. & Elfring, G. J. 2017 An active particle in a complex fluid. J. Fluid Mech. 823, 675688.CrossRefGoogle Scholar
Debye, P. & Bueche, A. M. 1948 Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 16 (6), 573579.CrossRefGoogle Scholar
Duke, T. & Viovy, J. L. 1994 Theory of DNA electrophoresis in physical gels and entangled polymer solutions. Phys. Rev. E 49 (3), 24082416.Google ScholarPubMed
Einarsson, J., Yang, M. & Shaqfeh, E. S. 2018 Einstein viscosity with fluid elasticity. Phys. Rev. Fluids 3 (1), 013301.CrossRefGoogle Scholar
Elfring, G. J. 2017 Force moments of an active particle in a complex fluid. J. Fluid Mech. 829, R3.CrossRefGoogle Scholar
Fabris, D., Muller, S. J. & Liepmann, D. 1999 Wake measurements for flow around a sphere in a viscoelastic fluid. Phys. Fluids 11 (12), 35993612.CrossRefGoogle Scholar
Harlen, O. G. 1990 High-Deborah-number flow of a dilute polymer solution past a sphere falling along the axis of a cylindrical tube. J. Non-Newtonian Fluid Mech. 37 (2-3), 157173.CrossRefGoogle Scholar
Harlen, O. G., Rallison, J. M. & Chilcott, M. D. 1990 High-Deborah-number flows of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 34 (3), 319349.CrossRefGoogle Scholar
Helgeson, M. E., Reichert, M. D., Hu, Y. T. & Wagner, N. J. 2009 Relating shear banding, structure, and phase behavior in wormlike micellar solutions. Soft Matt. 5 (20), 38583869.CrossRefGoogle Scholar
Henry, D. C. 1931 The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc. R. Soc. Lond. A 133, 106129.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. 1976 Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76 (4), 783799.CrossRefGoogle Scholar
Howse, J. R., Jones, R. A., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Hsu, J.-P., Hung, S.-H. & Yu, H.-Y. 2004 Electrophoresis of a sphere at an arbitrary position in a spherical cavity filled with Carreau fluid. J. Colloid Interface Sci. 280 (1), 256263.CrossRefGoogle Scholar
Hsu, J.-P., Yeh, L.-H. & Ku, M.-H. 2006 Electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid. Colloid Polym. Sci. 284 (8), 886892.CrossRefGoogle Scholar
Khair, A. S., Posluszny, D. E. & Walker, L. M. 2012 Coupling electrokinetics and rheology: electrophoresis in non-Newtonian fluids. Phys. Rev. E 85 (1), 016320.Google ScholarPubMed
Khair, A. S. & Squires, T. M. 2010 Active microrheology: a proposed technique to measure normal stress coefficients of complex fluids. Phys. Rev. Lett. 105 (15), 156001.CrossRefGoogle ScholarPubMed
Koch, D. L., Lee, E. F. & Mustafa, I. 2016 Stress in a dilute suspension of spheres in a dilute polymer solution subject to simple shear flow at finite Deborah numbers. Phys. Rev. Fluids 1 (1), 013301.CrossRefGoogle Scholar
Koch, D. L. & Subramanian, G. 2006 The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field. J. Non-Newtonian Fluid Mech. 138 (2-3), 8797.CrossRefGoogle Scholar
Kostal, V., Katzenmeyer, J. & Arriaga, E. A. 2008 Capillary electrophoresis in bioanalysis. Anal. Chem. 80 (12), 45334550.CrossRefGoogle ScholarPubMed
Lauga, E. 2014 Locomotion in complex fluids: integral theorems. Phys. Fluids 26 (8), 081902.CrossRefGoogle Scholar
Lauga, E. & Michelin, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117 (14), 148001.CrossRefGoogle ScholarPubMed
Leal, L. G. 1979 The motion of small particles in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 5, 3378.CrossRefGoogle Scholar
Lee, E., Chen, C.-T. & Hsu, J.-P. 2005 Electrophoresis of a rigid sphere in a Carreau fluid normal to a planar surface. J. Colloid Interface Sci. 285 (2), 857864.CrossRefGoogle Scholar
Leslie, F. M. & Tanner, R. I. 1961 The slow flow of a visco-elastic liquid past a sphere. Q. J. Mech. Appl. Maths 14 (1), 3648.CrossRefGoogle Scholar
Li, G., Archer, L. A. & Koch, D. L. 2019 Electroconvection in a viscoelastic electrolyte. Phys. Rev. Lett. 122 (12), 124501.CrossRefGoogle Scholar
Li, G., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53 (12), 911926.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.CrossRefGoogle Scholar
Mangelsdorf, C. S. & White, L. R. 1992 Electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J. Chem. Soc. Faraday Trans. 88 (24), 35673581.CrossRefGoogle Scholar
Moore, M. N. J. & Shelley, M. J. 2012 A weak-coupling expansion for viscoelastic fluids applied to dynamic settling of a body. J. Non-Newtonian Fluid Mech. 183, 2536.CrossRefGoogle Scholar
Morrison, F. A. 1970 Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 34 (2), 210214.CrossRefGoogle Scholar
Natale, G., Datt, C., Hatzikiriakos, S. G. & Elfring, G. J. 2017 Autophoretic locomotion in weakly viscoelastic fluids at finite Péclet number. Phys. Fluids 29 (12), 123102.CrossRefGoogle Scholar
O’Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92 (1), 204216.CrossRefGoogle Scholar
O’Brien, R. W. & Hunter, R. J. 1981 The electrophoretic mobility of large colloidal particles. Can. J. Chem. 59 (13), 18781887.CrossRefGoogle Scholar
O’Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 74, 16071626.CrossRefGoogle Scholar
Ohshima, H. 2013 Electrokinetic phenomena of soft particles. Curr. Opin. Colloid Interface Sci. 18 (2), 7382.CrossRefGoogle Scholar
Rallison, J. M. 2012 The stress in a dilute suspension of liquid spheres in a second-order fluid. J. Fluid Mech. 693, 500507.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.CrossRefGoogle Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9 (1), 321337.CrossRefGoogle Scholar
Sawatzky, R. P. & Babchin, A. J. 1993 Hydrodynamics of electrophoretic motion in an alternating electric field. J. Fluid Mech. 246, 321334.CrossRefGoogle Scholar
Schleiniger, G. & Weinacht, R. J. 1991 A remark on the Giesekus viscoelastic fluid. J. Rheol. 35 (6), 11571170.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2012a Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction. Phys. Rev. E 86 (2), 021503.Google Scholar
Schnitzer, O. & Yariv, E. 2012b Strong-field electrophoresis. J. Fluid Mech. 701, 333351.CrossRefGoogle Scholar
Schnitzer, O., Zeyde, R., Yavneh, I. & Yariv, E. 2013 Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids 25 (5), 052004.CrossRefGoogle Scholar
Sellier, A. 1999 Sur l’électrophorèse d’un ensemble de particules portant la même densité uniforme de charges. C.R. Acad. Sci. Paris IIB 327 (5), 443448.Google Scholar
Shoele, K. & Eastham, P. S. 2018 Effects of nonuniform viscosity on ciliary locomotion. Phys. Rev. Fluids 3 (4), 043101.CrossRefGoogle Scholar
Smoluchowski, M. von 1903 Contribution to the theory of electro-osmosis and related phenomena. Bull. Inter. Acad. Sci. Cracovie 3, 184199.Google Scholar
Southern, E. M. 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98 (3), 503517.CrossRefGoogle ScholarPubMed
Vidybida, A. K. & Serikov, A. A. 1985 Electrophoresis by alternating fields in a non-Newtonian fluid. Phys. Lett. A 108 (3), 170172.CrossRefGoogle Scholar
Wapperom, P. & Renardy, M. 2005 Numerical prediction of the boundary layers in the flow around a cylinder using a fixed velocity field. J. Non-Newtonian Fluid Mech. 125 (1), 3548.CrossRefGoogle Scholar
Wei, S., Cheng, Z., Nath, P., Tikekar, M. D., Li, G. & Archer, L. A. 2018 Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. Sci. Adv. 4 (3), eaao6243.CrossRefGoogle ScholarPubMed
Wiersema, P. H., Loeb, A. L. & Overbeek, J. T. G. 1966 Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22 (1), 7899.CrossRefGoogle Scholar
Woolley, A. T. & Mathies, R. A. 1994 Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl Acad. Sci. USA 91 (24), 1134811352.CrossRefGoogle ScholarPubMed
Yang, M. & Shaqfeh, E. S. 2018 Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part II. Suspensions at finite concentration. J. Rheol. 62 (6), 13791396.CrossRefGoogle Scholar
Yariv, E. 2006 Force-free electrophoresis? Phys. Fluids 18 (3), 031702.CrossRefGoogle Scholar
Zhao, C. & Yang, C. 2009 Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Appl. Math. Comput. 211 (2), 502509.Google Scholar
Zhao, C. & Yang, C. 2013 Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201, 94108.CrossRefGoogle ScholarPubMed
Zhou, J. & Schmid, F. 2015 Computer simulations of single particles in external electric fields. Soft Matt. 11 (34), 67286739.CrossRefGoogle ScholarPubMed
Zhu, L., Lauga, E. & Brandt, L. 2012 Self-propulsion in viscoelastic fluids: pushers versus pullers. Phys. Fluids 24 (5), 051902.CrossRefGoogle Scholar