Published online by Cambridge University Press: 26 April 2006
Entrainment of ambient fluid into both two-dimensional and axisymmetric gravity currents is investigated experimentally using a novel neutralization technique. The technique involves the titrative neutralization of an alkaline gravity current which intrudes into and entrains an acidic ambient, and is visualized using a pH indicator solution. Using this technique, we can determine quantitative results for the amount of dilution in the head of the current. The head of the current is able to entrain ambient fluid both by shear instabilities on the current/ambient interface and by over-riding (relatively light) ambient fluid. Guided by our experimental observations, we present two slightly different theoretical models to determine the entrainment into the head of the current as a function of distance from the source for the instantaneous release of a constant volume of fluid in a two-dimensional geometry. By dimensional analysis, we determine from both models that the dimensionless entrainment or dilution ratio, E, defined as the ratio of the volumes of ambient and original fluid in the head, is independent of the initial reduced gravity of the current; and this result is confirmed by our experiments in Boussinesq situations. Our theoretical evaluation of E in terms of the initial cross-sectional area of the current agrees very well with our experimental measurements on the incorporation of an entrainment coefficient α, evaluated experimentally to be 0.063 ± 0.003. We also obtain experimental results for constant-volume gravity currents moving over horizontal surfaces of varying roughness. A particularly surprising result from all the experiments, which is reflected in the theoretical models, is that the head remains essentially unmixed – the entrainment is negligible – in the slumping phase. Thus the heads of gravity currents with identical initial cross-sectional areas but different initial aspect ratios (lock lengths) will begin to be diluted by ambient fluid at different positions and hence propagate at different rates. A range of similar results is determined, both theoretically and experimentally, for the instantaneous release of a fixed volume of (heavy) fluid in an axisymmetric geometry. By contrast, the results of our experiments with gravity currents fed by a constant flux exhibit markedly different entrainment dynamics due to the continual replenishment of the fluid in the head by the constant input of undiluted fluid from the tail.