Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-21T14:08:10.450Z Has data issue: false hasContentIssue false

Field measurement of nonlinear changes to large gravity wave groups

Published online by Cambridge University Press:  01 July 2019

Tianning Tang*
Affiliation:
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Peter S. Tromans
Affiliation:
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK Ocean Wave Engineering, 99 Cumnor Hill, Oxford OX2 9JR, UK
Thomas A. A. Adcock
Affiliation:
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
*
Email address for correspondence: tianning.tang@some.ox.ac.uk

Abstract

The dynamics of large gravity waves are known to be modified from the linear model by nonlinear physics. In this paper we analyse Eulerian surface elevation time histories measured from two sites, Lake George (Australia) and the North Sea, to examine how weak nonlinearity has modified the shape of extreme wave groups relative to linear theory. We analyse the asymmetry of the extreme wave groups and find that, on average, the wave in front of an extreme wave is smaller than the wave following it. We also observe a contraction in the envelope width of the wave group relative to linear theory. The departures from linear theory are strongly correlated with the steepness of the underlying sea state and are generally consistent with theoretical expectations, providing strong evidence that such nonlinear phenomena arise in naturally occurring water waves.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, T. A. A., Gibbs, R. H. & Taylor, P. H. 2012 The nonlinear evolution and approximate scaling of directionally spread wave groups on deep water. Proc. R. Soc. Lond. A 468 (2145), 27042721.Google Scholar
Adcock, T. A. A. & Taylor, P. H. 2009 Estimating ocean wave directional spreading from an Eulerian surface elevation time history. Proc. R. Soc. Lond. A 465 (2111), 33613381.Google Scholar
Adcock, T. A. A. & Taylor, P. H. 2014 The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys. 77 (10), 105901.10.1088/0034-4885/77/10/105901Google Scholar
Adcock, T. A. A. & Taylor, P. H. 2016 Non-linear evolution of large waves in deep water – the influence of directional spreading and spectral bandwidth. In 26th Intl Ocean Polar Engng Conf. International Society of Offshore and Polar Engineers.Google Scholar
Adcock, T. A. A., Taylor, P. H. & Draper, S. 2015 Nonlinear dynamics of wave-groups in random seas: unexpected walls of water in the open ocean. Proc. R. Soc. Lond. A 471 (2184), 20150660.Google Scholar
Adcock, T. A. A., Taylor, P. H. & Draper, S. 2016 On the shape of large wave-groups on deep water – the influence of bandwidth and spreading. Phys. Fluids 28 (10), 106601.10.1063/1.4963777Google Scholar
Agnon, Y., Babanin, A. V., Young, I. R. & Chalikov, D. 2005 Fine scale inhomogeneity of wind–wave energy input, skewness, and asymmetry. Geophys. Res. Lett. 32, 14.10.1029/2005GL022701Google Scholar
Babanin, A. V., Chalikov, D., Young, I. R. & Savelyev, I. 2007 Predicting the breaking onset of surface water waves. Geophys. Res. Lett. 34 (7), 248265.10.1029/2006GL029135Google Scholar
Babanin, A. V. & Makin, V. K. 2008 Effects of wind trend and gustiness on the sea drag: Lake George study. J. Geophys. Res. 113 (2), C02015.10.1029/2007JC004233Google Scholar
Babanin, A. V., Young, I. R. & Banner, M. L. 2001 Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res. 106 (C6), 11659.10.1029/2000JC000215Google Scholar
Banner, M. L., Barthelemy, X., Fedele, F., Allis, M., Benetazzo, A., Dias, F. & Peirson, W. L. 2014 Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett. 112, 114502.10.1103/PhysRevLett.112.114502Google Scholar
Barthelemy, X., Banner, M. L., Peirson, W. L., Fedele, F., Allis, M. & Dias, F. 2018 On a unified breaking onset threshold for gravity waves in deep and intermediate depth water. J. Fluid Mech. 841, 463488.10.1017/jfm.2018.93Google Scholar
Bell, R. J., Gray, S. L. & Jones, O. P. 2017 North Atlantic storm driving of extreme wave heights in the North Sea. J. Geophys. Res. Oceans 122 (4), 32533268.10.1002/2016JC012501Google Scholar
Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27 (3), 417430.10.1017/S002211206700045XGoogle Scholar
Boccotti, P. 1983 Some new results on statistical properties of wind waves. Appl. Ocean Res. 5 (3), 134140.10.1016/0141-1187(83)90067-6Google Scholar
Christou, M. & Ewans, K. 2014 Field measurements of rogue water waves. J. Phys. Oceanogr. 44 (9), 23172335.10.1175/JPO-D-13-0199.1Google Scholar
Dalzell, J. F. 1999 A note on finite depth second-order wave–wave interactions. Appl. Ocean Res. 21 (3), 105111.10.1016/S0141-1187(99)00008-5Google Scholar
Dean, R. G. & Sharma, J. N. 1981 Simulation of wave systems due to nonlinear directional spectra. In Proc. Int. Symp. Hydrodyn. Ocean Engng, pp. 12111222. Norwegia Hydrodynamics Laboratory.Google Scholar
Dysthe, K. B., Krogstad, H. E. & Müller, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40 (1), 287310.10.1146/annurev.fluid.40.111406.102203Google Scholar
Efron, B. & Tibshirani, R. J. 1994 An Introduction to the Bootstrap. CRC Press.10.1201/9780429246593Google Scholar
Ewans, K., Feld, G. & Jonathan, P. 2014 On wave radar measurement. Ocean Dyn. 64 (9), 12811303.10.1007/s10236-014-0742-5Google Scholar
Ewans, K., Jonathan, P. & Feld, G. 2013 What does a wave radar actually measure. In 13th Int. Work. Wave Hindcasting 4th Coast. Hazards Symp. Banff, Alberta, Canada.Google Scholar
Fedele, F., Brennan, J., Ponce de León, S., Dudley, J. & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 6, 27715.10.1038/srep27715Google Scholar
Forristall, G. Z., Barstow, S. F., Krogstad, H. E., Prevosto, M., Taylor, P. H. & Tromans, P. S. 2004 Wave Crest Sensor Intercomparison Study: an overview of WACSIS. J. Offshore Mech. Arctic Engng 126 (1), 2634.10.1115/1.1641388Google Scholar
Fujimoto, W., Waseda, T. & Webb, A. 2019 Impact of the four-wave quasi-resonance on freak wave shapes in the ocean. Ocean Dyn. 69 (1), 121.10.1007/s10236-018-1234-9Google Scholar
Gemmrich, J. & Thomson, J. 2017 Observations of the shape and group dynamics of rogue waves. Geophys. Res. Lett. 44 (4), 18231830.Google Scholar
Gibbs, R. H. & Taylor, P. H. 2005 Formation of walls of water in fully nonlinear simulations. Appl. Ocean Res. 27 (3), 142157.10.1016/j.apor.2005.11.009Google Scholar
Goda, Y. 2000 Random Seas and Design of Maritime Structures, vol. 15. World Scientific.10.1142/3587Google Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;22.0.CO;2>Google Scholar
Kharif, C., Giovanangeli, J.-P., Touboul, J., Grare, L. & Pelinovsky, E. 2008 Influence of wind on extreme wave events experimental and numerical approaches. J. Fluid Mech. 594, 209247.10.1017/S0022112007009019Google Scholar
Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. 22 (6), 603634.10.1016/j.euromechflu.2003.09.002Google Scholar
Latheef, M., Swan, C. & Spinneken, J. 2017 A laboratory study of nonlinear changes in the directionality of extreme seas. Proc. R. Soc. Lond. A 473 (2199), 20160290.Google Scholar
Lindgren, G. 1970 Some properties of a normal process near a local maximum. Ann. Math. Stat. 41 (6), 18701883.10.1214/aoms/1177696688Google Scholar
Lo, E. & Mei, C. C. 1985 A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech. 150, 395416.10.1017/S0022112085000180Google Scholar
McAllister, M. L., Venugopal, V. & Borthwick, A. G. L. 2017 Wave directional spreading from point field measurements. Proc. R. Soc. Lond. A 473 (2200), 20160781.Google Scholar
Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves, 1st edn. World Scientific.Google Scholar
Melville, W. K. & Rapp, R. J. 1988 The surface velocity field in steep and breaking waves. J. Fluid Mech. 189, 122.10.1017/S0022112088000898Google Scholar
Mori, N., Onorato, M., Janssen, P. A. E. M., Osborne, A. R. & Serio, M. 2007 On the extreme statistics of long-crested deep water waves: theory and experiments. J. Geophys. Res. 112 (C9), C09011.10.1029/2006JC004024Google Scholar
Myrhaug, D. & Kjeldsen, S. P. 1986 Steepness and asymmetry of extreme waves and the highest waves in deep water. Ocean Engng 13 (6), 549568.10.1016/0029-8018(86)90039-9Google Scholar
Onorato, M., Osborne, A. R., Serio, M. & Bertone, S. 2001 Freak waves in random oceanic sea states. Phys. Rev. Lett. 86 (25), 58315834.10.1103/PhysRevLett.86.5831Google Scholar
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. T. 2006 Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur. J. Mech. – B/Fluids 25 (5), 586601.10.1016/j.euromechflu.2006.01.002Google Scholar
Prasada Rao, C. X. K. 1988 Spectral width parameter for wind-generated ocean waves. Proc. Indian Acad. Sci. – Earth Planet. Sci. 97 (2), 173.Google Scholar
Santo, H., Taylor, P. H., Eatock Taylor, R. & Choo, Y. S. 2013 Average properties of the largest waves in Hurricane Camille. J. Offshore Mech. Arctic Engng 135 (1), 1160211607.10.1115/1.4006930Google Scholar
Serio, M., Onorato, M., Osborne, A. R. & Janssen, P. A. E. M. 2005 On the computation of the Benjamin–Feir index. Nuovo Cimento C 28 (6), 893903.Google Scholar
Shemer, L., Kit, E., Jiao, H. & Eitan, O. 1998 Experiments on nonlinear wave groups in intermediate water depth. J. Waterway Port Coast. Ocean Engng 124 (6), 320327.10.1061/(ASCE)0733-950X(1998)124:6(320)Google Scholar
Socquet-Juglard, H., Dysthe, K. B., Trulsen, K., Krogstad, H. E. & Liu, J. 2005 Probability distributions of surface gravity waves during spectral changes. J. Fluid Mech. 542 (0), 195216.10.1017/S0022112005006312Google Scholar
Taylor, P. H. & Williams, B. A. 2004 Wave statistics for intermediate depth water – NewWaves and symmetry. J. Offshore Mech. Arctic Engng 126 (1), 5459.10.1115/1.1641796Google Scholar
Toffoli, A., Monbaliu, J., Onorato, M., Osborne, A. R., Babanin, A. V. & Bitner-Gregersen, E. 2007 Second-order theory and setup in surface gravity waves: a comparison with experimental data. J. Phys. Oceanogr. 37 (11), 27262739.10.1175/2007JPO3634.1Google Scholar
Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M., Stramignoni, E., Forza, R., Manfrin, M. & Onorato, M. 2017 Wind generated rogue waves in an annular wave flume. Phys. Rev. Lett. 118 (14), 144503.10.1103/PhysRevLett.118.144503Google Scholar
Tromans, P. S., Anatruk, A. R. & Hagemeijer, P. 1991 New model for the kinematics of large ocean waves application as a design wave. Proc. First Int. Offshore Polar Engng Conf. 8 (August), 6471.Google Scholar
Walker, D. A. G., Taylor, P. H. & Eatock Taylor, R. 2004 The shape of large surface waves on the open sea and the Draupner New Year wave. Appl. Ocean Res. 26 (3–4), 7383.10.1016/j.apor.2005.02.001Google Scholar
Young, I. R. 1994 On the measurement of directional wave spectra. Appl. Ocean Res. 16 (5), 283294.10.1016/0141-1187(94)90017-5Google Scholar
Young, I. R., Banner, M. L., Donelan, M. A., McCormick, C., Babanin, A. V., Melville, W. K. & Veron, F. 2005 An integrated system for the study of wind–wave source terms in finite-depth water. J. Atmos. Ocean. Technol. 22 (7), 814831.10.1175/JTECH1726.1Google Scholar
Young, I. R. & Verhagen, L. A. 1996 The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast. Engng 29 (1–2), 4778.10.1016/S0378-3839(96)00006-3Google Scholar
Young, I. R., Verhagen, L. A. & Banner, M. L. 1995 A note on the bimodal directional spreading of fetch-limited wind waves. J. Geophys. Res. 100 (C1), 773.10.1029/94JC02218Google Scholar