Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T23:49:30.322Z Has data issue: false hasContentIssue false

Flow separation control behind a cylindrical bump using dielectric-barrier-discharge vortex generator plasma actuators

Published online by Cambridge University Press:  28 November 2017

Julie A. Vernet
Affiliation:
Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
Ramis Örlü
Affiliation:
Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
P. Henrik Alfredsson*
Affiliation:
Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: phal@mech.kth.se

Abstract

Dielectric-barrier-discharge plasma actuators are arranged to produce counter-rotating streamwise vortices to control flow separation on a cylindrical bump on a flat plate that is approached by a turbulent boundary layer. The control was tested for different free-stream velocities and actuation driving voltages. The recirculation area downstream of the bump was reduced by the actuation for velocities up to $15~\text{m}~\text{s}^{-1}$ at the highest voltage achievable of the present set-up. However, the flow shows a bi-modality, the nominal two-dimensional wake flow is shown to consist of large-scale streamwise vortices, which are energised by the actuation until a phenomenon of lock-on of these vortices occurs at sufficiently high driving voltages. The wavelength of the actuation is half that of the large-scale vortices. The lock-on shifts sometimes, i.e. the large streamwise vortices centre switch spanwise location, explaining the bi-modality in the flow. The details of the bi-modality are further investigated by conditional averaging and proper orthogonal decomposition.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Scania CV AB, SE-151 87 Södertälje, Sweden.

References

Alving, A. E. & Fernholz, H. H. 1995 Mean-velocity scaling in and around a mild, turbulent separation bubble. Phys. Fluids 7, 19561969.CrossRefGoogle Scholar
Angele, K. P. & Muhammad-Klingmann, B. 2006 PIV measurements in a weakly separating and reattaching turbulent boundary layer. Eur. J. Mech. (B/Fluids) 25, 204222.CrossRefGoogle Scholar
Avdis, A., Lardeau, S. & Leschziner, M. 2009 Large eddy simulation of separated flow over a two-dimensional hump with and without control by means of a synthetic slot-jet. Flow Turbul. Combust. 83, 343370.CrossRefGoogle Scholar
Bakewell, H. P. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 18801889.CrossRefGoogle Scholar
Barckmann, K., Tropea, C. & Grundmann, S. 2015 Attenuation of Tollmien–Schlichting waves using plasma actuator vortex generators. AIAA J. 53, 13841388.CrossRefGoogle Scholar
Benard, N. & Moreau, E. 2014 Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55, 1846.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.CrossRefGoogle Scholar
Cattafesta, L. N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Choi, H., Lee, J. & Park, H. 2014 Aerodynamics of heavy vehicles. Annu. Rev. Fluid Mech. 46, 441468.CrossRefGoogle Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.CrossRefGoogle Scholar
Enloe, C. L., McLaughlin, T. E., Van Dyken, R. D., Kachner, K. D., Jumper, E. J., Corke, T. C., Post, M. L. & Haddad, O. 2004 Mechanisms and responses of a dielectric barrier plasma actuator: geometric effects. AIAA J. 42, 595604.CrossRefGoogle Scholar
Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G. & Cazalens, M. 2007 Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp. Fluids 43, 917928.CrossRefGoogle Scholar
Greenblatt, D., Paschal, K. B., Yao, C.-S., Harris, J., Schaeffler, N.-N. W. & Washburn, A. E. 2006 Experimental investigation of separation control – Part 1: baseline and steady suction. AIAA J. 44, 28202830.CrossRefGoogle Scholar
Huang, X., Chan, S. & Zhang, X. 2007 Atmospheric plasma actuators for aeroacoustic applications. IEEE Trans. Plasma Sci. 35, 693695.CrossRefGoogle Scholar
Jukes, T. N. & Choi, K. S. 2012 Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Exp. Fluids 52, 329345.CrossRefGoogle Scholar
Jukes, T. N. & Choi, K. S. 2013 On the formation of streamwise vortices by plasma vortex generators. J. Fluid Mech. 733, 370393.Google Scholar
Jukes, T. N., Segawa, T. & Furutani, H. 2013 Flow control on a NACA 4418 using dielectric-barrier-dfischarge vortex generators. AIAA J. 51, 452464.CrossRefGoogle Scholar
Kelley, C. L., Corke, T. C., Thomas, F. O., Patel, M. & Cain, A. B. 2016 Design and scaling of plasma streamwise vortex generators for flow separation control. AIAA J. 54, 33973408.CrossRefGoogle Scholar
Kotsonis, M. 2015 Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26, 092001.CrossRefGoogle Scholar
Kriegseis, J., Simon, B. & Grundmann, S. 2016 Towards in-flight applications? A review on dielectric barrier discharge-based boundary-layer control. Appl. Mech. Rev. 68, 020802.CrossRefGoogle Scholar
Lindgren, B. & Johansson, A. V.2002 Design and evaluation of a low-speed wind-tunnel with expanding corners. Tech. Rep. Royal Institute of Technology, Department of Mechanics, TRITA-MEK 2002:14.Google Scholar
Lögdberg, O., Angele, K. & Alfredsson, P. H. 2008 On the scaling of turbulent separating boundary layers. Phys. Fluids 20, 075104.CrossRefGoogle Scholar
Lögdberg, O., Fransson, J. H. M. & Alfredsson, P. H. 2009 Streamwise evolution of longitudinal vortices in a turbulent boundary layer. J. Fluid Mech. 623, 2732.CrossRefGoogle Scholar
Meyer, K. E. E., Pedersen, J. M. & Ozcan, O. 2007 A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199227.CrossRefGoogle Scholar
Minelli, G., Krajnovic, S., Basara, B. & Noack, B. R. 2016 Numerical investigation of active flow control around a generic truck A-pillar. Flow Turbul. Combust. 97, 12351254.CrossRefGoogle ScholarPubMed
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D 40, 605636.CrossRefGoogle Scholar
Naghib-Lahouti, A., Doddipatla, L. S. & Hangan, H. 2012 Secondary wake instabilities of a blunt trailing edge profiled body as a basis for flow control. Exp. Fluids 52, 15471566.CrossRefGoogle Scholar
Naghib-Lahouti, A., Lavoie, P. & Hangan, H. 2014 Wake instabilities of a blunt trailing edge profiled body at intermediate Reynolds numbers. Exp. Fluids 55, 1779.CrossRefGoogle Scholar
Otsu, N. 1979 A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 6266.CrossRefGoogle Scholar
Pearson, D. S., Goulart, P. J. & Ganapathisubramani, B. 2013 Turbulent separation upstream of a forward-facing step. J. Fluid Mech. 724, 284304.CrossRefGoogle Scholar
Post, M. L. & Corke, T. C. 2004 Separation control on high angle of attack airfoil using plasma actuators. AIAA J. 42, 21772184.CrossRefGoogle Scholar
Raffel, M., Willert, C. E., Wereley, S. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer.CrossRefGoogle Scholar
Scharnowski, S., Bolgar, I. & Kähler, C. J. 2017 Characterization of turbulent structures in a transonic backward-facing step flow. Flow Turbul. Combust. 98, 947967.CrossRefGoogle Scholar
Schatzman, D. & Thomas, F.2008 Turbulent boundary layer separation control using plasma actuators. In AIAA Paper 2008-4199.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.CrossRefGoogle Scholar
Seifert, A. 2015 Evaluation criteria and performance comparison of actuators. In Instability and Control of Massively Separated Flows (ed. Theofilis, V. & Soria, J.), pp. 5964. Springer.CrossRefGoogle Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205234.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45, 561571.CrossRefGoogle Scholar
Tylli, N., Kaiktsis, L. & Ineichen, B. 2002 Sidewall effects in flow over a backward-facing step: experiments and numerical simulations. Phys. Fluids 14, 38353845.CrossRefGoogle Scholar
Vernet, J. A., Örlü, R. & Alfredsson, P. H. 2015 Separation control by means of plasma actuation on a half cylinder approached by a turbulent boundary layer. J. Wind. Engng Ind. Aerodyn. 145, 318326.CrossRefGoogle Scholar
Vernet, J. A., Örlü, R. & Alfredsson, P. H. 2016 Turbulent boundary layer upstream, over and downstream a cylindrical 2D bump. In Progress in Turbulence VI (ed. Peinke, J., Kampers, G., Oberlack, M., Waclawczyk, M. & Talamelli, A.), pp. 279283. Springer.CrossRefGoogle Scholar
Vernet, J. A., Örlü, R., Söderblom, D., Elofsson, P. & Alfredsson, P. H. 2017 Plasma streamwise vortex generators for flow separation control on trucks: a proof-of-concept experiment. Flow Turbul. Combust. (submitted).Google Scholar
Wang, J.-J., Choi, K. S., Feng, L.-H., Jukes, T. N. & Whalley, R. D. 2013 Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 5278.CrossRefGoogle Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39, 10961100.CrossRefGoogle Scholar
Wicks, M., Thomas, F. O., Corke, T. C., Patel, M. & Cain, A. B. 2015 Mechanism of vorticity generation in plasma streamwise vortex generators. AIAA J. 53, 34043413.CrossRefGoogle Scholar
Wicks, M., Thomas, F. O., Schatzman, D., Bowles, P., Corke, T. C., Patel, M. & Cain, A. B.2012 A parametric investigation of plasma streamwise vortex generator performance. AIAA Paper 2012-0824.CrossRefGoogle Scholar
Supplementary material: File

Vernet et al supplementary material

Vernet et al supplementary material 1

Download Vernet et al supplementary material(File)
File 387.5 KB