Published online by Cambridge University Press: 26 April 2006
As is well known, most gas-fluidized beds of solid particles bubble; that is, they are traversed by rising regions containing few particles. Most liquid-fluidized beds, on the other hand, do not. The aim of the present paper is to investigate whether this distinction can be accounted for by certain equations of motion which have commonly been used to describe both types of bed. For the particular case of a bed of 200 μm diameter glass beads fluidized by air at ambient conditions it is demonstrated, by direct numerical integration, that small perturbations of the uniform bed grow into structures resembling the bubbles observed in practice. When analogous computations are performed for a water-fluidized bed of 1 mm diameter glass beads, using the same equations, with parameters modified only to account for the greater density and viscosity of water and to secure the same bed expansion at minimum fluidization, it is found that bubble-like structures cannot be grown. The reasons for this difference in behaviour are discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.