Published online by Cambridge University Press: 26 April 2006
We consider inviscid incompressible flow about an infinite non-slender flat delta wing with leading-edge separation modeled by symmetrical conical vortex sheets. A similarity solution for the three dimensional steady velocity potential Φ is sought with boundary conditions to be satisfied on the line which is the intersection of the wing sheet surface with the surface of the unit sphere. A numerical approach is developed based on the construction of a special boundary element or ‘winglet’ which is effectively a Green function for the projection of ∇2Φ = 0 onto the spherical surface under the similarity ansatz. When the wing semi-apex angle γo is fixed satisfaction of the boundary conditions of zero normal velocity on the wing and zero normal velocity and pressure continuity across the vortex sheet then leads to a nonlinear eigenvalue problem. A method of ensuring a condition of zero lateral force on a lumped model of the inner part of the rolled-up vortex sheet gives a closed set of a equations which is solved numerically by Newton's method. We present and discuss the properties of solutions for γ0 in the range 1.30 < γ <89.50. The dependencies of these solutions on γ0 differs qualitatively from predictions of slender-body theory. In particular the velocity field is in general not conical and the similarity exponent must be calculated as part of the global eigenvalue problem. This exponent, together with the detailed flow field including the position and structure of the separated vortx sheet, depend only on γ0. In the limit of small γ0, a comparison with slender-body theory is made on the basis of an effective angle of incidence.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.