Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T14:44:57.872Z Has data issue: false hasContentIssue false

Large eddy simulation of a stratified boundary layer under an oscillatory current

Published online by Cambridge University Press:  17 December 2009

BISHAKHDATTA GAYEN
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
SUTANU SARKAR*
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
JOHN R. TAYLOR
Affiliation:
Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: ssarkar@ucsd.edu

Abstract

A numerical study based on large eddy simulation is performed to investigate a bottom boundary layer under an oscillating tidal current. The focus is on the boundary layer response to an external stratification. The thermal field shows a mixed layer that is separated from the external stratified fluid by a thermocline. The mixed layer grows slowly in time with an oscillatory modulation by the tidal flow. Stratification strongly affects the mean velocity profiles, boundary layer thickness and turbulence levels in the outer region although the effect on the near-bottom unstratified fluid is relatively mild. The turbulence is asymmetric between the accelerating and decelerating stages. The asymmetry is more pronounced with increasing stratification. There is an overshoot of the mean velocity in the outer layer; this jet is linked to the phase asymmetry of the Reynolds shear stress gradient by using the simulation data to examine the mean momentum equation. Depending on the height above the bottom, there is a lag of the maximum turbulent kinetic energy, dissipation and production with respect to the peak external velocity and the value of the lag is found to be influenced by the stratification. Flow instabilities and turbulence in the bottom boundary layer excite internal gravity waves that propagate away into the ambient. Unlike the steady case, the phase lines of the internal waves change direction during the tidal cycle and also from near to far field. The frequency spectrum of the propagating wave field is analysed and found to span a narrow band of frequencies clustered around 45°.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 a An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395422.CrossRefGoogle Scholar
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 b An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 2. Numerical simulations. J. Fluid Mech. 225, 423444.Google Scholar
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.CrossRefGoogle Scholar
Bewley, T. R. 2007 Numerical Renaissance: Simulation, Optimization and Control. Renaissance Press.Google Scholar
Blondeaux, P. & Seminara, G. 1979 Transizione incipiente al fondo di un'onda di gravitá. Rend. fisici Accad.Lincei, serie 8 LXVII.Google Scholar
Burchard, H., Petersen, O. & Rippeth, T. P. 1998 Comparing the performance of the Mellor–Yamada and the κ-ϵ two-equation turbulence models. J. Geophys. Res. 103 (C5), 10 54310 554.Google Scholar
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid. Mech. 474, 133.CrossRefGoogle Scholar
Davies, A. M., Jones, J. E. & Xing, J. 1997 Review of recent developments in tidal hydrodynamic modeling. II: turbulence energy models. J. Hydraul. Engng 123 (4), 293302.Google Scholar
Dohan, K. & Sutherland, B. R. 2003 Internal waves generated from a turbulent mixed region. Phys. Fluids 15 (2), 488498.CrossRefGoogle Scholar
Dohan, K. & Sutherland, B. R. 2005 Numerical and laboratory generation of internal waves from turbulence. Dyn. Atmos. Oceans 40, 4356.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3 (7), 17601765.Google Scholar
Hino, M., Kashiwayanagi, M., Nakayama, A. & Hara, T. 1983 Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363400.Google Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75, 193207.CrossRefGoogle Scholar
Hsu, C.-T., Lu, X. & Kwan, M.-K. 2000 LES and RANS studies of oscillating flows over flat plate. J. Engng Mech. 126 (2), 186193.Google Scholar
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.CrossRefGoogle Scholar
Klemp, J. B. & Durran, D. R. 1983 An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Weather Rev. 111, 430444.2.0.CO;2>CrossRefGoogle Scholar
Lighthill, J. 1990 Waves in Fluids, 1st edn. Cambridge University Press.Google Scholar
Lohmann, I. P., Fredsøe, J., Sumer, B. M. & Christensen, E. D. 2006 Large eddy simulation of the ventilated wave boundary layer. J. Geophys. Res. – Oceans 111, C06036.Google Scholar
Lorke, A., Umlauf, L., Jonas, T. & Wüest, A. 2002 Dynamics of turbulence in low-speed oscillating bottom-boundary layers of stratified basins. Environ. Fluid Mech. 2, 291313.CrossRefGoogle Scholar
Lozovatsky, I., Liu, Z., Wei, H. & Fernando, H. J. S. 2008 a Tides and mixing in the northwestern East China Sea. Part I: rotating and reversing tidal flows. Cont. Shelf Res. 28, 318337.Google Scholar
Lozovatsky, I., Liu, Z., Wei, H. & Fernando, H. J. S. 2008 b Tides and mixing in the northwestern East China Sea. Part II: near-bottom turbulence. Cont. Shelf Res. 28, 338350.CrossRefGoogle Scholar
Lund, T. S. 1997 On the use of discrete filters for large eddy simulation. In Annual Research Briefs, pp. 8395. Center for Turbulence Research, NASA Ames/Stanford University.Google Scholar
Luznik, L., Gurka, R., Nimmo Smith, W. A. M., Zhu, W., Katz, J. & Osborn, T. R. 2007 Distribution of energy spectra, Reynolds stresses, turbulence production and dissipation in a tidally driven boundary layer. J. Phys. Oceanogr. 37, 15271550.CrossRefGoogle Scholar
Nagaosa, R. & Saito, T. 1997 Turbulence structure and scalar transfer in stably stratified free-surface flows. AIChE J. 43, 2393.CrossRefGoogle Scholar
Perlin, A., Moum, J., Klymak, J., Levine, M., Boyd, T. & Kosro, P. 2005 A modified law-of-the-wall applied to oceanic bottom boundary layers. J. Geophys. Res. 110, C10S10, doi: 10.1029/2004JC002310.Google Scholar
Perlin, A., Moum, J., Klymak, J., Levine, M., Boyd, T. & Kosro, P. 2007 Organization of stratification, turbulence, and veering in bottom Ekman layers. J. Geophys. Res. 112, C5, doi: 10.1029/2004JC002641.Google Scholar
Radhakrishnan, S. & Piomelli, U. 2008 Large-eddy simulation of oscillating boundary layers: model comparison and validation. J. Geophys. Res. 113, C02022.Google Scholar
Richards, K. J. 1982 Modeling the benthic boundary layer. J. Phys. Oceanogr. 12, 428439.Google Scholar
Sakamoto, K. & Akitomo, K. 2006 Instabilities of the tidally induced bottom bottom boundary layer in the rotating frame and their mixing effect. Dyn. Atmos. Oceans 41, 191211.CrossRefGoogle Scholar
Sakamoto, K. & Akitomo, K. 2008 The tidally induced bottom boundary layer in a rotating frame: similarity of turbulence. J. Fluid Mech. 615, 125.CrossRefGoogle Scholar
Sakamoto, K. & Akitomo, K. 2009 The tidally induced bottom boundary layer in the rotating frame: development of the turbulent mixed layer under stratification. J. Fluid Mech. 619, 235259.CrossRefGoogle Scholar
Salon, S., Armenio, V. & Crise, A. 2007 A numerical investigation of the Stokes boundary layer in the turbulent regime. J. Fluid Mech. 570, 253296.Google Scholar
Sarpkaya, T. 1993 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 253, 105140.CrossRefGoogle Scholar
Scotti, A. & Piomelli, U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13 (5), 13671384.Google Scholar
Sleath, J. F. A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid. Mech. 182, 369409.Google Scholar
Spalart, P. R. & Baldwin, B. S. 1987 Direct simulation of a turbulent oscillating boundary layer. In Turbulent Shear Flows (eds. Andre, J.-C., Cousteix, J., Durst, F., Launder, B. E., Schmidt, F. W. & Whitelaw, J. H.), vol. 6, pp. 417440. Springer.Google Scholar
Sutherland, B. R. & Linden, P. F. 1998 Internal wave excitation from stratified flow over a thin barrier. J. Fluid Mech. 377, 223252.CrossRefGoogle Scholar
Taylor, J. R. & Sarkar, S. 2007 Internal gravity waves generated by a turbulent bottom Ekman layer. J. Fluid Mech. 590 (1), 331354.Google Scholar
Taylor, J. R. & Sarkar, S. 2008 Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr. 38 (11), 25352555.Google Scholar
Taylor, J. R., Sarkar, S. & Armenio, V. 2005 Large-eddy simulation of stably stratified open channel flow. Phys. Fluids 17, 116602.Google Scholar
Thorpe, S. A., Green, J. A. M., Simpson, J. H., Osborn, T. R. & Nimmo Smith, W. A. M. 2008 Boils and turbulence in a weakly stratified shallow tidal sea. J. Phys. Oceanogr. 38, 17111730.CrossRefGoogle Scholar
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.Google Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357390.CrossRefGoogle Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5 (12), 31863196.CrossRefGoogle Scholar