Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T15:20:49.044Z Has data issue: false hasContentIssue false

Modelling the first droplet emission from an electrified liquid meniscus hanging at the nozzle tip

Published online by Cambridge University Press:  23 May 2024

Hao Chen
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Guozhen Wang
Affiliation:
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Tao An
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Zhouping Yin
Affiliation:
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Haisheng Fang*
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
*
Email address for correspondence: hafang@hust.edu.cn

Abstract

Electrohydrodynamic (EHD)-induced droplet emission is an efficient method for the production of micron- and submicron-sized droplets in technological applications. Existing studies propose several scaling laws to determine the size of the emitted droplet. However, they have usually focused on the tip streaming phenomena of a droplet when subjected to a uniform electric field. In most applications, a non-uniform distribution of the electric field is created owing to the nozzle-to-plate configuration. Here, we employ an arbitrary Lagrangian–Eulerian method to demonstrate the mechanism of the first droplet emission from an electrified liquid meniscus with a fixed volume hanging at the nozzle tip. The critical condition when tip streaming occurs is determined using our numerical results. A phase diagram in terms of the electric field and initial liquid volume is presented to obtain the commonly used jetting mode. The effects of the liquid volume, electric field strength and electrical conductivity of the liquid on the processes of jet formation and breakup are further investigated. We find a particularly non-monotonic dependence of the size of the emitted droplet on the electrical conductivity. These findings could be useful for generating microdroplets and improving injection frequency in EHD printing technology.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajayi, O.O. 1978 A note on Taylor's electrohydrodynamic theory. Proc. R. Soc. Lond. A: Math. Phys. Sci. 364, 499507.Google Scholar
Anthony, C.R., et al. 2023 Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence. Annu. Rev. Fluid Mech. 55, 707747.CrossRefGoogle Scholar
Basaran, O.A., Gao, H. & Bhat, P.P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.CrossRefGoogle Scholar
Beroz, J., Hart, A.J. & Bush, J.W.M. 2019 Stability limit of electrified droplets. Phys. Rev. Lett. 122, 244501.CrossRefGoogle ScholarPubMed
Chen, H., Chen, W., Yin, Z. & Fang, H. 2023 Electrohydrodynamic-induced partial coalescence between a droplet and a liquid–air interface. J. Fluid Mech. 963, A39.CrossRefGoogle Scholar
Cisquella-Serra, A., Magnani, M., Gual-Mosegui, Á, Holmberg, S., Madou, M. & Gamero-Castaño, M. 2019 Study of the electrostatic jet initiation in near-field electrospinning. J. Colloid Interface Sci. 543, 106113.CrossRefGoogle ScholarPubMed
Cloupeau, M. & Prunet-Foch, B. 1990 Electrostatic spraying of liquids: main functioning modes. J. Electrostat. 25, 165184.CrossRefGoogle Scholar
Cloupeau, M. & Prunet-Foch, B. 1994 Electrohydrodynamic spraying functioning modes: a critical review. J. Aerosol Sci. 25, 10211036.CrossRefGoogle Scholar
Collins, R.T., Jones, J.J., Harris, M.T. & Basaran, O.A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4, 149154.CrossRefGoogle Scholar
Collins, R.T., Sambath, K., Harris, M.T. & Basaran, O.A. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110, 49054910.CrossRefGoogle ScholarPubMed
Das, S.K., Dalal, A. & Tomar, G. 2021 Electrohydrodynamic-induced interactions between droplets. J. Fluid Mech. 915, A88.CrossRefGoogle Scholar
Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. 1989 Electrospray ionization for mass spectrometry of large biomolecules. Science 246 (4926), 6471.CrossRefGoogle ScholarPubMed
Ferrera, C., López-Herrera, J.M., Herrada, M.A., Montanero, J.M. & Acero, A.J. 2013 Dynamical behavior of electrified pendant drops. Phys. Fluids 25, 012104.CrossRefGoogle Scholar
Gallud, X. & Lozano, P.C. 2022 The emission properties, structure and stability of ionic liquid menisci undergoing electrically assisted ion evaporation. J. Fluid Mech. 933, A43.CrossRefGoogle Scholar
Gamero-Castaño, M. & Magnani, M. 2018 Numerical simulation of electrospraying in the cone-jet mode. J. Fluid Mech. 859, 247267.CrossRefGoogle Scholar
Gamero-Castaño, M. & Magnani, M. 2019 The minimum flow rate of electrosprays in the cone-jet mode. J. Fluid Mech. 876, 553572.CrossRefGoogle Scholar
Gañán-Calvo, A.M., Lasheras, J.C., Dávila, J. & Barrero, A. 1994 The electrostatic spray emitted from an electrified conical meniscus. J. Aerosol Sci. 25, 11211142.CrossRefGoogle Scholar
Gañán-Calvo, A.M., López-Herrera, J.M., Herrada, M.A., Ramos, A. & Montanero, J.M. 2018 Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aerosol Sci. 125, 3256.CrossRefGoogle Scholar
Gañán-Calvo, A.M., López-Herrera, J.M., Rebollo-Muñoz, N. & Montanero, J.M. 2016 The onset of electrospray: the universal scaling laws of the first ejection. Sci. Rep. 6, 19.CrossRefGoogle ScholarPubMed
Gawande, N., Mayya, Y.S. & Thaokar, R. 2019 Jet and progeny formation in the Rayleigh breakup of a charged viscous drop. J. Fluid Mech. 884, A31.CrossRefGoogle Scholar
Guan, Y., Wu, S., Wang, M., Tian, Y., Yu, C., Lai, W. & Huang, Y. 2022 Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric Bond numbers. Phys. Fluids 34, 012001.CrossRefGoogle Scholar
Harris, M.T. & Basaran, O.A. 1993 Capillary electrohydrostatics of conducting drops hanging from a nozzle in an electric field. J. Colloid Interface Sci. 161, 389413.CrossRefGoogle Scholar
Hijano, A.J., Loscertales, I.G. & Higuera, F.J. 2021 Modelling the electric microdripping from a needle. J. Fluid Mech. 920, A47.CrossRefGoogle Scholar
Hijano, A.J., Loscertales, I.G., Ibáñez, S.E. & Higuera, F.J. 2015 Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid. Phys. Rev. E 91, 112.CrossRefGoogle ScholarPubMed
Ismail, A.S., Yao, J., Xia, H.H. & Stark, J.P.W. 2018 Breakup length of electrified liquid jets: scaling laws and applications. Phys. Rev. Appl. 10, 064010.CrossRefGoogle Scholar
Jaworek, A. & Krupa, A. 1999 Classification of the modes of EHD spraying. J. Aerosol Sci. 30, 873893.CrossRefGoogle Scholar
Kong, Q., Yang, S., Wang, Q., Wang, Z., Dong, Q., & Wang, J. 2022 Dynamics of electrified jets in electrohydrodynamic atomization. Case Stud. Therm. Engng 29, 101725.CrossRefGoogle Scholar
Lee, A., Jin, H., Dang, H.W., Choi, K.H. & Ahn, K.H. 2013 Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 29, 1363013639.CrossRefGoogle ScholarPubMed
Lohse, D. 2022 Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54, 349382.CrossRefGoogle Scholar
López-Herrera, J.M., Herrada, M.A. & Gañán-Calvo, A.M. 2023 Electrokinetic modelling of cone-jet electrosprays. J. Fluid Mech. 964, A19.CrossRefGoogle Scholar
Marginean, I., Nemes, P. & Vertes, A. 2006 Order-chaos-order transitions in electrosprays: the electrified dripping faucet. Phys. Rev. Lett. 97, 14.CrossRefGoogle ScholarPubMed
Melcher, J.R. & Taylor, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.CrossRefGoogle Scholar
Montanero, J.M. & Gañán-Calvo, A.M. 2020 Dripping, jetting and tip streaming. Rep. Prog. Phys. 83, 097001.CrossRefGoogle ScholarPubMed
de la Mora, J.F. & Loscertales, I.G. 1994 The current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155184.CrossRefGoogle Scholar
Nie, Q., Li, F., Ma, Q., Fang, H. & Yin, Z. 2021 b Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets. J. Fluid Mech. 925, 129.CrossRefGoogle Scholar
Nie, Q., Ma, Q., Yang, W., Pan, X., Liu, Z., Fang, H. & Yin, Z. 2021 a Designing working diagrams for electrohydrodynamic printing. Chem. Engng Sci. 240, 116661.CrossRefGoogle Scholar
Notz, P.K. & Basaran, O.A. 1999 Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213, 218237.CrossRefGoogle ScholarPubMed
Park, J.U., et al. 2007 High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782789.CrossRefGoogle ScholarPubMed
Rubio, M., Rodríguez-Díaz, P., López-Herrera, J.M., Herrada, M.A., Gañán-Calvo, A.M. & Montanero, J.M. 2023 The role of charge relaxation in electrified tip streaming. Phys. Fluids 35, 017131.CrossRefGoogle Scholar
Rubio, M., Sadek, S.H., Gañán-Calvo, A.M. & Montanero, J.M. 2021 Diameter and charge of the first droplet emitted in electrospray. Phys. Fluids 33, 032002.CrossRefGoogle Scholar
Saville, D.A. 1997 Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.CrossRefGoogle Scholar
Sengupta, R., Walker, L.M. & Khair, A.S. 2017 The role of surface charge convection in the electrohydrodynamics and breakup of prolate drops. J. Fluid Mech. 833, 2953.CrossRefGoogle Scholar
Taylor, G. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A: Math. Phys. Sci. 280, 383397.Google Scholar
Taylor, G. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A: Math. Phys. Sci. 291, 159166.Google Scholar
Verdoold, S., Agostinho, L.L.F., Yurteri, C.U. & Marijnissen, J.C.M. 2014 A generic electrospray classification. J. Aerosol Sci. 67, 87103.CrossRefGoogle Scholar
Vlahovska, P.M. 2019 Electrohydrodynamics of drops and vesicles. Annu. Rev. Fluid Mech. 51, 305330.CrossRefGoogle Scholar
Wagoner, B.W., Vlahovska, P.M., Harris, M.T. & Basaran, O.A. 2021 Electrohydrodynamics of lenticular drops and equatorial streaming. J. Fluid Mech. 925, A36.CrossRefGoogle Scholar
Wendorff, J.H., Agarwal, S. & Greiner, A. 2012 Electrospinning. Wiley.CrossRefGoogle Scholar
Zeleny, J. 1917 Instability of electrified liquid surfaces. Phys. Rev. 10, 16.CrossRefGoogle Scholar
Zhong, S., Lu, Y., Yang, Y., Zhao, Y., Yang, Y. & Peng, Y. 2023 Numerical investigation of the effect of operating parameters on droplet ejection in a double ring electrohydrodynamic printing device. J. Electrostat. 122, 103795.CrossRefGoogle Scholar