Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T16:55:06.317Z Has data issue: false hasContentIssue false

Numerical simulation of turbulent convection over wavy terrain

Published online by Cambridge University Press:  26 April 2006

Kilian Krettenauer
Affiliation:
DLR, Institute of Atmospheric Physics, W-8031 Oberpfaffenhofen, Germany
Ulrich Schumann
Affiliation:
DLR, Institute of Atmospheric Physics, W-8031 Oberpfaffenhofen, Germany

Abstract

Thermal convection of a Boussinesq fluid in a layer confined between two infinite horizontal walls is investigated by direct numerical simulation (DNS) and by large-eddy simulation (LES) for zero horizontal mean motion. The lower-surface height varies sinusoidally in one horizontal direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15H and wavelength λ of H to 8H (inclination up to 43°), where H is the mean fluid-layer height. Constant heat flux is prescribed at the lower surface of the initially at rest and isothermal fluid layer. In the LES, the surface is treated as rough surface (z0 = 10−4H) using the Monin-Oboukhov relationships. At the flat top an adiabatic frictionless boundary condition is applied which approximates a strong capping inversion of an atmospheric convective boundary layer. In both horizontal directions, the model domain extends over the same length (either 4H or 8H) with periodic lateral boundary conditions.

We compare DNS of moderate turbulence (Reynolds number based on H and on the convective velocity is 100, Prandtl number is 0.7) with LES of the fully developed turbulent state in terms of turbulence statistics and Characteristic large-scale-motion structures. The LES results for a flat surface generally agree well with the measurements of Adrian et al. (1986). The gross features of the flow statistics, such as profiles of turbulence variances and fluxes, are found to be not very sensitive to the variations of wavelength, amplitude, domain size and resolution and even the model type (DNS or LES), whereas details of the flow structure are changed considerably. The LES shows more turbulent structures and larger horizontal scales than the DNS. To a weak degree, the orography enforces rolls with axes both perpendicular and parallel to the wave crests and with horizontal wavelengths of about 2H to 4H. The orography has the largest effect for λ = 4H in the LES and for λ = 2H in the DNS. The results change little when the size of the computational domain is doubled in both horizontal directions. Most of the motion energy is contained in the large-scale structures and these structures are persistent in time over periods of several convective time units. The motion structure persists considerably longer over wavy terrain than over flat surfaces.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Ferreira, R. T. D. S. & Boberg, T. 1986 Turbulent thermal convection in wide horizontal fluid layers. Expts. in Fluids 4, 121141.Google Scholar
Beljaars, A. C. M. & Holtslag, A. A. M. 1991 Flux parameterization over land surfaces for atmospheric models. J. Appl. Met. 30, 327341.Google Scholar
Briggs, G. A. 1988 Surface inhomogeneity effects on convective diffusion. Boundary-Layer Met. 45, 117135.Google Scholar
Busse, F. H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 19301967.Google Scholar
Caughey, S. J. & Palmer, S. G. 1979 Some aspects of the turbulent structure through the depth of the convective boundary layer. Q. J. R. Met. Soc. 105, 811827.Google Scholar
Clark, T. 1977 A small-scale dynamical model using a terrain-following coordinate transformation. J. Comput. Phys. 24, 186215.Google Scholar
Deardorff, J. W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27, 12111213.Google Scholar
Druilhet, A., Frangi, J. P., Guedalia, D. & Fontan, J. 1983a Experimental studies of the turbulence structure parameters of the convective boundary layer. J. Clim. Appl. Met. 22, 22594.Google Scholar
Druilhet, A., Noilhan, J., Benech, B., Dubosclard, G., Guedalia, D. & Frangi, J. 1983b éAtude expeArimentale de la couche limite au-dessus d'un relief modeAreA proche d'une chaiCne de montagne. Boundary-Layer Met. 25, 316.Google Scholar
Ebert, E. E., Schumann, U. & Stull, R. B. 1989 Nonlocal turbulent mixing in the convective boundary layer evaluated from large-eddy simulation. J. Atmos. Sci. 46, 21782207.Google Scholar
Fiedler, B. H. 1989 Scale selection in nonlinear thermal convection between poorly conducting boundaries. Geophys. Astrophys. Fluid Dyn. 46, 191201.Google Scholar
Garratt, J. R., Pielke, R. A., Miller, W. F. & Lee, T. J. 1990 Mesoscale model response to random, surface based perturbations - a sea-breeze experiment. Boundary-Layer Met. 52, 313334.Google Scholar
Graf, J. & Schumann, U. 1991 Simulation der konvektiven Grenzschicht im Vergleich mit Flugzeugmessungen beim LOTREX-Experiment. Met. Rdsch. 43, 140148.Google Scholar
GroUtzbach, G. 1983 Spatial resolution requirements for direct numerical simulation of the Rayleigh-BeAnard convection. J. Comput. Phys. 49, 241264.Google Scholar
Hadfield, M. G. 1988 The response of the atmospheric convective boundary layer to surface inhomogeneities. Colorado State University, Atmospheric Science Paper 433.
Hechtel, L. M., Moeng, C.-H. & Stull, R. R. 1990 The effects of nonhomogeneous surface fluxes on the convective boundary layer: A case study using large-eddy simulation. J. Atmos. Sci. 47, 17211741.Google Scholar
Huynh, B. P., Coulman, C. E. & Turner, T. R. 1990 Some turbulence characteristics of convectively mixed layers over rugged and homogeneous terrain. Boundary-Layer Met. 51, 229254.Google Scholar
Jochum, A. 1988 Turbulent transport in the convective boundary layer over complex terrain. In Proc. Eighth Symp. on Turbulence and Diffusion, San Diego, pp. 417420. Am. Met. Soc.
Kaimal, J. C., Eversole, R. A., Lenschow, D. H., Stankov, B. B., Kahn, P. H. & Businger, J. A. 1982 Spectral characteristics of the convective boundary layer over uneven terrain. J. Atmos. Sci. 39, 10981114.Google Scholar
Kelly, R. E. & Pal, D. 1978 Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech. 86, 433456.Google Scholar
Krettenauer, K. 1991 Numerische Simulation turbulenter Konvektion uUber gewellten FlaUchen. dissertation; rep. DLR-FB 91-12, DLR Oberpfaffenhofen, 162 pp.
Krettenauer, K. & Schumann, U. 1989a Struktur der konvektiven Grenzschicht bei verschiedenen thermischen Randbedingungen. Ann. Met. 26, 26278.Google Scholar
Krettenauer, K. & Schumann, U. 1989b Direct numerical simulation of thermal convection over a wavy surface. Met. Atmos. Phys. 41, 41165.Google Scholar
Lenschow, D. H. & Stankov, B. B. 1986 Length scales in the convective boundary layer. J. Atmos. Sci. 43, 11981209.Google Scholar
Mason, P. J. 1989 Large eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 14921516.Google Scholar
Moeng, C.-H. & Rotunno, R. 1990 Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci. 47, 11491162.Google Scholar
Moeng, C.-H. & Wyngaard, J. C. 1989 Evaluation of turbulent and dissipation closures in second-order modeling. J. Atmos. Sci. 46, 23112330.Google Scholar
Nieuwstadt, F. T. M. 1990 Direct and large-eddy simulation of free convection. In Proc. 9th Intl Heat Transfer Conf., Jerusalem, 19–24 August 1990, vol. 1, pp. 3747. ASME.
Nieuwstadt, F. T. M., Mason, P. J., Moeng, C.-H. & Schumann, U. 1991 Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. In Proc. 8th Turbulent Shear Flow Symp., Munich, 9–11 Sept. 1991, Paper 1.4.1, 6 pp.
Pal, D. & Kelly, R. E. 1979 Three-dimensional thermal convection produced by two-dimensional thermal forcing. ASME Paper 79-HT-109, 8 pp.Google Scholar
Pielke, R. A. 1984 Mesoscale Meteorological Modeling. Academic, 612 pp.
Priestley, C. H. B. 1962 The width-height ratio of large convective cells. Tellus 14, 123124.Google Scholar
Ray, D. 1965 Cellular convection with nonisotropic eddys. Tellus 17, 434439.Google Scholar
SchaUdler, G. 1990 Triggering of atmospheric circulations by moisture inhomogeneities of the earth's surface. Boundary-Layer Met. 51, 129.Google Scholar
Schmidt, H. 1988 Grobstruktur-Simulation konvektiver Grenzschichten. thesis, University of Munich; Rep. DFVLR-FB 88-30, DLR Oberpfaffenhofen, 143 pp.
Schmidt, H. & Schumann, U. 1989 Coherent structure of the convective boundary layer deduced from large-eddy simulation. J. Fluid Mech. 200, 511562.Google Scholar
Schumann, U. 1988 Minimum friction velocity and heat transfer in the rough surface layer of a convective boundary layer. Boundary-Layer Met. 44, 311326.Google Scholar
Schumann, U. 1989 Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Environ. 23, 17131727.Google Scholar
Schumann, U. 1990 Large-eddy simulation of the upslope boundary layer. Q. J. R. Met. Soc. 116, 637670.Google Scholar
Schumann, U. 1991 Subgrid length-scales for large-eddy simulation of stratified turbulence. Theoret. Comput. Fluid Dyn. 2, 279290.Google Scholar
Schumann, U. 1992 A simple model of the convective boundary layer over wavy terrain with variable heat flux. Beitr. Phys. Atmos. 64, No. 3 (in press).Google Scholar
Schumann, U., Hauf, T., HoUller, H., Schmidt, H. & Volkert, H. 1987 A mesoscale model for the simulation of turbulence, clouds and flow over mountains: Formulation and validation examples. Beitr. Phys. Atmos. 60, 413446.Google Scholar
Schumann, U. & Sweet, R. A. 1988 Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions. J. Comput. Phys. 75, 123137.Google Scholar
Schumann, U. & Volkert, H. 1984 Three-dimensional mass- and momentum-consistent Helmholtz-equation in terrain-following coordinates. In Notes on Numerical Fluid Mechanics, vol. 10 (ed. W. Hackbusch), pp. 109131. Vieweg.
Smolarkiewicz, P. K. 1984 A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys. 54, 325362.Google Scholar
Sorbjan, Z. 1990 Similarity scales and universal profiles of statistical moments in the convective boundary layer. J. Appl. Met. 29, 762775.Google Scholar
Stull, R. B. 1988 An Introduction to Boundary Layer Meteorology. Kluwer, 664 pp.
Sykes, R. I. & Henn, D. S. 1989 Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci. 46, 11061118.Google Scholar
Walko, R. L., Cotton, W. R. & Pielke, R. A. 1990 Large eddy simulation of the CBL over hilly terrain. In Proc. 9th Symp. on Turbulence and Diffusion, Roskilde, Denmark, April 30-May 3, pp. 409412. Am. Met. Soc.
Wilczak, J. M. & Phillips, M. S. 1986 An indirect estimation of convective boundary layer structure for use in pollution dispersion models. J. Clim. Appl. Met. 25, 16091624.Google Scholar