Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T07:48:29.577Z Has data issue: false hasContentIssue false

On the genesis and evolution of barchan dunes: morphodynamics

Published online by Cambridge University Press:  15 February 2017

A. Khosronejad
Affiliation:
Department of Civil Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, USA
F. Sotiropoulos*
Affiliation:
Department of Civil Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, USA
*
Email address for correspondence: fotis.sotiropoulos@stonybrook.edu

Abstract

Barchan dunes are crescent-shaped formations of sand that can dominate both desert and subaqueous landscapes when the supply of sand is scarce. Because of the complexity and scale of the underlying phenomena, the mechanisms governing the entire process from the genesis to the long-term evolution of barchan fields still remain to be better understood. Herein, we attempt to present a description of this process in a subaqueous environment by employing a large-eddy simulation approach that couples turbulent flow and sand-bed morphodynamics. We show that the seeds of the emergent structure in barchan fields are random turbulent flow motions near the initially flat bed. We also provide high-resolution insights into phenomena such as barchan migration and merging, and show how transverse sand waves are formed and migrate over the barchan horns. Furthermore, the transverse sand waves over the barchan horns are shown to be the seeds of the newly born barchans at the end points of the two horns of a barchan through the process known as calving. To show this, we examine the celerity, wavelength and amplitude of the transverse sand waves over the barchan as they approach the end of its horn. The celerity and wavelength of these transverse sand waves are shown to be the defining factors in determining the frequency of the calving process. The amplitude of the newly born barchans (through calving) is also shown to be associated with the amplitude of the transverse waves near the end of the horn. The simulation data also show that the wavelength of the newly born barchans (the distance between individual dunes) is closely related to that of the transverse sand waves over their maternal barchan. Finally, we use the simulation results to discuss past conclusions derived from theory, conventional models and field observations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. S. 1996 The attraction of sand dunes. Nature 379, 2425.Google Scholar
Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.Google Scholar
Andreotti, B., Claudin, P. & Douady, S. 2002a Selection of dune shapes and velocities part 1: dynamics of sand, wind, and barchans. Eur. Phys. J. B 28, 321339.Google Scholar
Andreotti, B., Claudin, P. & Douady, S. 2002b Selection of dune shapes and velocities part 2: a two-dimensional modelling. Eur. Phys. J. B 28, 341352.Google Scholar
Andreotti, B., Fourriere, A., Ould-Kaddour, F., Murray, B. & Claudin, P. 2009 Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457, 11201123.Google Scholar
Apsley, D. D. & Stansby, P. K. 2008 Bed-load sediment transport on large slopes: model formulation and implementation within a RANS solver. ASCE J. Hydraul. Engng 134 (10), 14401451.Google Scholar
Bagnold, R. A. 1941 The Physics of Blown Sand and Desert Dunes. Methuen.Google Scholar
Borazjani, I., Ge, L. & Sotiropoulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227, 75877620.Google Scholar
Bridges, N. T., Ayoub, F., Avouac, J. P., Leprince, S., Lucas, A. & Mattson, S. 2012 Earth-like sand fluxes on Mars. Nature 458, 339342.CrossRefGoogle Scholar
Charru, F. & Franklin, E. M. 2012 Subaqueous barchan dunes in turbulent shear flow. Part 2. Fluid flow. J. Fluid Mech. 694, 131154.Google Scholar
Chou, Y. J. & Fringer, O. B. 2010 A model for the simulation of coupled flow-bed form evolution in turbulent flows. J. Geophys. Res. 115, C10041.Google Scholar
Duc, B. M. & Rodi, W. 2008 Numerical simulation of contraction scour in an open laboratory channel. ASCE J. Hydraul. Engng 134 (4), 367377.Google Scholar
Duran, O., Parteli, E. J. R. & Herrmann, H. J. 2010 A continuous model for sand dunes: review, new developments and application to barchans dunes and barchan dune fields. Earth Surf. Process. Landf. 35, 15911600.CrossRefGoogle Scholar
Elbelrhiti, H., Claudin, P. & Andreotti, B. 2005 Field evidence for surface-wave-induced instability of sand dunes. Nature 437, 720723.Google Scholar
Engelund, F. & Fredsoe, J. 1976 A sediment transport model for straight alluvial channels. Nord. Hydrol. 7, 293306.CrossRefGoogle Scholar
Engelund, F. & Fredsoe, J. 1982 Sediment ripples and dunes. Annu. Rev. Fluid Mech. 14, 1337.CrossRefGoogle Scholar
Finkel, H. J. 1959 The barchans of southern Peru. J. Geol. 67, 614647.CrossRefGoogle Scholar
Fisher, P. F. & Galdies, P. 1988 A computer model for barchan-dune movement. Comput. Geosci. 14 (2), 229253.Google Scholar
Franklin, E. M. & Charru, F. 2011 Subaqueous barchan dunes in turbulent shear flow. Part 1. Dune motion. J. Fluid Mech. 675, 199222.CrossRefGoogle Scholar
Fredsoe, J. 1974 On the development of dunes in erodible channels. J. Fluid Mech. 60, 116.Google Scholar
Ge, L. & Sotiropoulos, F. 2007 A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225, 17821809.Google Scholar
Genois, M., Hersen, S., du Pont, C. & Grgoire, G. 2013 When dunes move together, structure of deserts emerges. Geophys. Res. Lett. 40, 39093914.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Guignier, L., Niyah, H., Nishimori, H., Lague, D. & Valance, A. 2013 Sand dunes as migrating strings. Phys. Rev. E 87, 052206.Google Scholar
Hastenrath, S. L. 1967 The barchans of the Arequipa region, southern Peru. Zeitschrift für Geomorphologie 11, 300331.Google Scholar
Hersen, P., Douady, S. & Andreotti, B. 2002 Relevant length scale of barchan dunes. Phys. Rev. Lett. 89 (26), 2643011.CrossRefGoogle ScholarPubMed
Howard, A. D., Morton, J. B., Gad-El-Hak, M. & Pierce, D. B. 1978 Sand transport model of barchans dune equilibrium. Sedimentology 25, 307338.CrossRefGoogle Scholar
Kang, S., Khosronejad, A. & Sotiropoulos, F. 2012 Numerical simulation of turbulent flow and sediment transport processes in arbitrarily complex waterways. In Environmental Fluid Mechanics, Memorial Volume in Honour of Professor Gerhard H. Jirka, pp. 123151. CRC Press (Taylor and Francis Group).Google Scholar
Kang, S., Lightbody, A., Hill, C. & Sotiropoulos, F. 2011 High-resolution numerical simulation of turbulence in natural waterways. Adv. Water Resour. 34 (1), 98113.Google Scholar
Kang, S. & Sotiropoulos, F. 2011 Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool–riffle sequence: insights gained via numerical simulation. J. Geophys. Res. 116, F0301.Google Scholar
Khosronejad, A., Hansen, A. T., Kozarek, J. L., Guentzel, K., Hondzo, M., Guala, M., Wilcock, P., Finlay, J. C. & Sotiropoulos, F. 2016 Large eddy simulation of turbulence and solute transport in a forested headwater stream. J. Geophys. Res. Earth Surf. 121 (1), 146167.Google Scholar
Khosronejad, A., Hill, C., Kang, S. & Sotiropoulos, F. 2013 Computational and experimental investigation of scour past laboratory models of stream restoration rock structures. Adv. Water Resour. 54, 191207.Google Scholar
Khosronejad, A., Kang, S., Borazjani, I. & Sotiropoulos, F. 2011 Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv. Water Resour. 34 (7), 829843.Google Scholar
Khosronejad, A., Kang, S. & Sotiropoulos, F. 2012 Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 37, 7385.Google Scholar
Khosronejad, A., Kozarek, J. L., Palmsten, M. L. & Sotiropoulos, F. 2015 Numerical simulation of large dunes in meandering streams and rivers with in-stream structure. Adv. Water Resour. 81, 4561.CrossRefGoogle Scholar
Khosronejad, A., Kozarek, J. L. & Sotiropoulos, F. 2014 Simulation-based approach for stream restoration structure design: model development and validation. ASCE J. Hydraul. Engng 140 (9), 04014042.Google Scholar
Khosronejad, A., Rennie, C., Salehi, A. & Townsend, R. 2007 3D numerical modeling of flow and sediment transport in laboratory channel bends. ASCE J. Hydraul. Engng 133 (10), 11231134.Google Scholar
Khosronejad, A., Salehi, A., Rennie, C. & Gholami, I. 2008 Three dimensional numerical modeling of sediment release in a water reservoir. J. Hydraul Res. 46 (2), 209223.CrossRefGoogle Scholar
Khosronejad, A. & Sotiropoulos, F. 2014 Numerical simulation of sand waves in a turbulent open channel flow. J. Fluid Mech. 753, 150216.Google Scholar
Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901.CrossRefGoogle ScholarPubMed
Kroy, K. & Guo, X. 2004 Comment on relevant length scale of barchan dunes. Phys. Rev. Lett. 93 (3), 039401–1.Google Scholar
Kroy, K., Sauermann, G. & Herrmann, H. J. 2002a Minimal model for aeolian sand dunes. Phys. Rev. E 66, 0311302.Google ScholarPubMed
Kroy, K., Sauermann, G. & Herrmann, H. J. 2002b Minimal model for sand dunes. Phys. Rev. Lett. 88, 054301.Google Scholar
Lima, A. R., Sauermann, G., Herrmann, H. J. & Kroy, K. 2002 Modelling a dune field. Physica A 310, 487500.CrossRefGoogle Scholar
Long, J. Y. & Sharp, R. P. 1964 Barchan-dune movement in the Imperial Valley, California. Geol. Soc. Am. Bull. 75, 149156.Google Scholar
Mantz, P. A. 1978 Bedforms produced by fine, cohesionless, granular and flakey sediments under subcritical water flows. Sedimentology 25, 83103.Google Scholar
Nabi, M., de Vriend, H. J., Mosselman, E., Sloff, J. & Shimizu, Y. 2012 Detailed simulation of morphodynamics: 1 hydrodynamic model. Water Resour. Res. 48, W12523.Google Scholar
Olsen, N. & Kjellesvig, H. M. 1998 Three dimensional numerical flow modeling for estimation of maximum local scour depth. J. Hydraul Res. 36 (4), 579590.Google Scholar
Omidyeganeh, M. & Piomelli, U. 2013a Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 1. Turbulence statistics. J. Fluid Mech. 721, 454483.CrossRefGoogle Scholar
Omidyeganeh, M. & Piomelli, U. 2013b Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 2. Flow structures. J. Fluid Mech. 734, 509534.CrossRefGoogle Scholar
Omidyeganeh, M., Piomelli, U., Christensen, K. T. & Best, J. L. 2013 Large eddy simulation of interacting barchan dunes in a steady, unidirectional flow. J. Geophys. Res. 118, 20892104.Google Scholar
Hersen, P. 2005 Flow effects on the morphology and dynamics of aeolian and subaqueous barchans dunes. J. Geophys. Res. 110, F04S07.Google Scholar
Paola, C. & Voller, V. R. 2005 A generalized Exner equation for sediment mass balance. J. Geophys. Res. 110, F04014.Google Scholar
Parteli, E. J. R., Duran, O., Bourke, M. C., Tsoar, H., Pschel, T. & Herrmann, H. 2014a Origins of barchan dune asymmetry: insights from numerical simulations. Aeolian Res. 12, 121133.Google Scholar
Parteli, E. J. R., Duran, O. & Herrmann, H. J. 2007 Initial size of a barchan dune. Phys. Rev. E 5 (1), 011301.Google Scholar
Parteli, E. J. R. & Herrmann, H. J. 2003 A simple model for a transverse dune field. Physica A 327, 554562.Google Scholar
Parteli, E. J. R., Kroy, K., Tsoar, H., Andrade, J. S. Jr. & Poschel, T. 2014b Morphodynamic modeling of aeolian dunes: review and future plans. Eur. Phys. J. 223.Google Scholar
van Rijn, L. C. 1984 Sediment transport, part III: bed forms and alluvial roughness. ASCE J. Hydraul. Engng 110 (12), 17331754.Google Scholar
van Rijn, L. C. 1993 Principles of Sediment Transport in Rivers, Estuaries, and Coastal Seas. Aqua Publications.Google Scholar
Roulund, A., Sumer, B. M., Fredsoe, J. & Michelsen, J. 2005 Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351401.Google Scholar
Sauermann, G., Andrade, J. S. Jr, Maiac, L. P., Costab, U. M. S., Araujod, A. D. & Herrmanna, H. J. 2003 Wind velocity and sand transport on a barchan dune. Geomorphology 54, 245255.Google Scholar
Sauermann, G., Kroy, K. & Herrmann, H. J. 2001 The shape of the barchan dunes of southern Morocco. Phys. Rev. E 64, 031305.Google Scholar
Sauermann, G., Rognon, P., Poliakov, A. & Herrmann, H. J. 2000 The shape of the barchan dunes of southern Morocco. Geomorphology 36, 4762.Google Scholar
Schwammle, V. & Herrmann, H. J. 2003 Solitary wave behaviour of sand dunes. Nature 426, 619620.Google Scholar
Smagorinsky, J. S. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99164.Google Scholar
Sotiropoulos, F. & Khosronejad, A. 2016 Sand waves in environmental flows: insights gained by coupling large-eddy simulation with morphodynamics. Phys. Fluids 28 (2), 021301.CrossRefGoogle Scholar
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752, 310348.Google Scholar
Venditti, J. G. & Church, M. A. 2005 Bed form initiation from a flat sand bed. J. Geophys. Res. 110, F01009.Google Scholar
Werner, B. T. 1995 Eolian dunes: computer simulations and attractor interpretation. Geology 23 (12), 11071110.Google Scholar
Werner, B. T. 1999 Complexity in natural landform patterns. Science 284, 102104.Google Scholar
Worman, S. L., Murray, A. B., Littlewood, R., Andreotti, B. & Claudin, P. 2013 Modeling emergent large-scale structures of barchan dune fields. Geology 41 (10), 10591062.Google Scholar
Zedler, E. A. & Street, R. L. 2006 Sediment transport over ripples in oscillatory flow. ASCE J. Hydraul. Engng 132 (2), 114.Google Scholar
Zhang, D., Narteau, C., Rozier, O. & du Pont, S. C. 2012 Morphology and dynamics of star dunes from numerical modelling. Nature Geoscience 5, 463467.Google Scholar

Khosronejad et al. supplementary movie

Simulated instantaneous bed evolution in a window as wide as the flume and about 2 m long. Color map shows the contours of bed elevation. The movie is about 100 times faster than physical time and flow is from left to right. For full movie with premium quality email fotis.sotiropoulos@stonybrook.edu.

Download Khosronejad et al. supplementary movie(Video)
Video 9.8 MB

Khosronejad et al. supplementary movie

Simulated instantaneous 3D geometry of evolving bed colored with contours of dimensionless shear velocity along with vectors of bedload flux in a window as wide as the flume and about 2 m long. The movie is about 100 times faster than physical time and flow is from left to right. Note that unlike Movie 1, this movie starts hours after bed evolution has started to make the video file fit 10 MB limit. For full movie with premium quality email fotis.sotiropoulos@stonybrook.edu.

Download Khosronejad et al. supplementary movie(Video)
Video 9.6 MB

Khosronejad et al. supplementary movie

Simulated instantaneous iso-surfaces of dimensionless vorticity magnitude (=25) over the 3D geometry of evolving bed in a window as wide as the flume and about 2 m long. The movie is about 100 times faster than physical time and flow is from left to right. Note that unlike Movie 1, this movie starts hours after bed evolution has started to make the video file fit 10 MB limit. For full movie with premium quality email fotis.sotiropoulos@stonybrook.edu.

Download Khosronejad et al. supplementary movie(Video)
Video 9.5 MB