Article contents
Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection
Published online by Cambridge University Press: 28 January 2010
Abstract
The onset of thermal convection in a finite rotating cylinder is investigated using direct numerical simulations of the Navier–Stokes equations with the Boussinesq approximation in a regime in which spatio-temporal complexity is observed directly after onset. The system is examined in the non-physical limit of zero centrifugal force as well as with an experimentally realizable centrifugal force, leading to two different paths to Küppers–Lortz-like spatio-temporal chaos. In the idealized case, neglecting centrifugal force, the onset of convection occurs directly from a conduction state, resulting in square patterns with slow roll switching, followed at higher thermal driving by straight roll patterns with faster roll switching. The case with a centrifugal force typical of laboratory experiments exhibits target patterns near the theoretically predicted onset of convection, followed by a rotating wave that emerges via a Hopf bifurcation. A subsequent Hopf bifurcation leads to ratcheting states with sixfold symmetry near the axis. With increasing thermal driving, roll switching is observed within the ratcheting lattice before Küppers–Lortz-like spatio-temporal chaos is observed with the dissolution of the lattice at a slightly stronger thermal driving. For both cases, all of these states are observed within a 2% variation in the thermal driving.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2010
References
REFERENCES
Rubio et al. supplementary movie
Movie 1. This movie corresponds to figure 5(a) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 0.005 for a solution with Ra=2372, Ω0=19.7, σ=4.5, γ=11.8 & Fr=0. Here 76,500 viscous times are shown at a rate of 4,500 viscous times per second.
Rubio et al. supplementary movie
Movie 1. This movie corresponds to figure 5(a) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 0.005 for a solution with Ra=2372, Ω0=19.7, σ=4.5, γ=11.8 & Fr=0. Here 76,500 viscous times are shown at a rate of 4,500 viscous times per second.
Rubio et al. supplementary movie
Movie 2. This movie corresponds to figure 5(b) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 0.005 for a solution with Ra=2373, Ω0=19.7, σ=4.5, γ=11.8 & Fr=0. Here 95,400 viscous times are shown at a rate of 4,500 viscous times per second.
Rubio et al. supplementary movie
Movie 2. This movie corresponds to figure 5(b) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 0.005 for a solution with Ra=2373, Ω0=19.7, σ=4.5, γ=11.8 & Fr=0. Here 95,400 viscous times are shown at a rate of 4,500 viscous times per second.
Rubio et al. supplementary movie
Movie 3. This movie corresponds to figure 5(c) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 0.005 for a solution with Ra=2374, Ω0=19.7, σ=4.5, γ=11.8 & Fr=0. Here 130,050 viscous times are shown at a rate of 4,500 viscous times per second.
Rubio et al. supplementary movie
Movie 3. This movie corresponds to figure 5(c) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 0.005 for a solution with Ra=2374, Ω0=19.7, σ=4.5, γ=11.8 & Fr=0. Here 130,050 viscous times are shown at a rate of 4,500 viscous times per second.
Rubio et al. supplementary movie
Movie 4. This movie corresponds to figure 13(b) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2390, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 47250 viscous times are shown at a rate of 6750 viscous times per second.
Rubio et al. supplementary movie
Movie 4. This movie corresponds to figure 13(b) in the paper. Shown are isosurfaces of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2390, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 47250 viscous times are shown at a rate of 6750 viscous times per second.
Rubio et al. supplementary movie
Movie 5. This movie corresponds to figure 13(c) in the paper over a time span indicated by box C in figure 14. Shown are contour levels of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2400, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 47250 viscous times are shown at a rate of 6750 viscous times per second.
Rubio et al. supplementary movie
Movie 5. This movie corresponds to figure 13(c) in the paper over a time span indicated by box C in figure 14. Shown are contour levels of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2400, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 47250 viscous times are shown at a rate of 6750 viscous times per second.
Rubio et al. supplementary movie
Movie 6. This movie corresponds to figure 13(d) in the paper over a time span indicated by box A in figure 14. Shown are isosurfaces of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2420, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 4050 viscous times are shown at a rate of 135 viscous times per second.
Rubio et al. supplementary movie
Movie 6. This movie corresponds to figure 13(d) in the paper over a time span indicated by box A in figure 14. Shown are isosurfaces of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2420, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 4050 viscous times are shown at a rate of 135 viscous times per second.
Rubio et al. supplementary movie
Movie 7. This movie corresponds to figure 13(d) in the paper over a time span indicated by box B in figure 14. Shown are contour levels of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2420, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 4050 viscous times are shown at a rate of 135 viscous times per second.
Rubio et al. supplementary movie
Movie 7. This movie corresponds to figure 13(d) in the paper over a time span indicated by box B in figure 14. Shown are contour levels of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2420, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=8.82 x 10-3. Here 4050 viscous times are shown at a rate of 135 viscous times per second.
Rubio et al. supplementary movie
Movie 8. This movie corresponds to figure 5(f) in the paper over a time span indicated by box A in figure 7. Shown are isosurfaces of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2420, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=0. Here 4050 viscous times are shown at a rate of 135 viscous times per second.
Rubio et al. supplementary movie
Movie 8. This movie corresponds to figure 5(f) in the paper over a time span indicated by box A in figure 7. Shown are isosurfaces of the temperature perturbation at Θ=+/- 5ε for a solution with Ra=2420, Ω0=19.7, σ=4.5 & γ=11.8 and Fr=0. Here 4050 viscous times are shown at a rate of 135 viscous times per second.
- 17
- Cited by