Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T00:26:18.846Z Has data issue: false hasContentIssue false

Primary cementing of horizontal wells. Displacement flows in eccentric horizontal annuli. Part 1. Experiments

Published online by Cambridge University Press:  20 October 2020

A. Renteria
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
I. A. Frigaard*
Affiliation:
Departments of Mathematics and Mechanical Engineering, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
*
Email address for correspondence: frigaard@math.ubc.ca

Abstract

We present results of $\approx$300 miscible Newtonian displacement flow experiments carried out in a dimensionally scaled laboratory set-up. Annulus eccentricity, density difference and viscosity of the fluids are varied, over a wide range of laminar Reynolds numbers. Comparisons with predictions from the two-dimensional gap-averaged (2DGA) model of Carrasco-Teja et al. (J. Fluid Mech., vol. 605, 2008, pp. 293–327) show excellent agreement in predicting the underlying competition between buoyancy and eccentricity, which results in either top side or slumping flows. Other features of the experiments are not predicted as well. The main discrepancy results from a variety of dispersive effects that are not present in the 2DGA model, e.g. dispersion within the annular gap and due to azimuthal secondary flows. We find that dispersive effects dominate to the extent that the slumping flows are best described by bulk diffusive spreading of the height-averaged concentrations, relative to the mean flow. A variety of flow structures and wave-like instabilities are discussed. The study is relevant to the oilfield process of primary cementing of horizontal wells.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alba, K., Taghavi, S. M. & Frigaard, I. A. 2013 Miscible density-unstable displacement flows in inclined tube. Phys. Fluids 25, 067101.CrossRefGoogle Scholar
Allouche, M., Frigaard, I. A. & Sona, G. 2000 Static wall layers in the displacement of two visco-plastic fluids in a plane slot. J. Fluid Mech. 424, 243277.CrossRefGoogle Scholar
Aranha, P., Miranda, C., Cardoso, W., Campos, G., Martins, A., Gomes, F., de Araujo, S. & Carvalho, M. 2012 A comprehensive theoretical and experimental study on fluid displacement for oilwell-cementing operations. Society of Petroleum Engineers Paper number SPE 150276.CrossRefGoogle Scholar
de Bertodano, M. L., Fullmer, W. D., Clausse, A. & Ransom, V. 2017 Two-Fluid Model Stability, Simulation and Chaos. Springer.CrossRefGoogle Scholar
Bittleston, S., Ferguson, J. & Frigaard, I. A. 2002 Mud removal and cement placement during primary cementing of an oil well – laminar non-Newtonian displacements in an eccentric annular Hele-Shaw cell. J. Engng Maths 43 (2), 229253.CrossRefGoogle Scholar
Bogaerts, M., Azwar, C., Bellabarba, M., Dooply, M. & Salehpour, A. 2015 Wellbore cementing: an integral part of well integrity. Society of Petroleum Engineers Paper number OTC-25800-MS.CrossRefGoogle Scholar
Carrasco-Teja, M. & Frigaard, I. A. 2009 Displacement flows in horizontal, narrow, eccentric annuli with a moving inner cylinder. Phys. Fluids 21 (7), 073102.CrossRefGoogle Scholar
Carrasco-Teja, M. & Frigaard, I. A. 2010 Non-Newtonian fluid displacements in horizontal narrow eccentric annuli: effects of slow motion of the inner cylinder. J. Fluid Mech. 653, 137173.CrossRefGoogle Scholar
Carrasco-Teja, M., Frigaard, I. A., Seymour, B. R. & Storey, S. 2008 Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions. J. Fluid Mech. 605, 293327.CrossRefGoogle Scholar
Couturier, M., Guillot, D. & Hendriks, H. & Callet, F. 1990 Design rules and associated spacer properties for optimal mud removal in eccentric annuli. Society of Petroleum Engineers Paper number SPE 21594.CrossRefGoogle Scholar
Deawwanich, T. 2013 Flow and displacement of viscoplastic fluids in eccentric annuli. PhD Thesis, University of Adelaide, Australia.Google Scholar
Etrati, A. & Frigaard, I. A. 2018 a Viscosity effects in density-stable miscible displacement flows: experiments and simulations. Phys. Fluids 30, 123104.CrossRefGoogle Scholar
Etrati, A. & Frigaard, I. A. 2018 b A two-layer model for buoyant inertial displacement flows in inclined pipes. Phys. Fluids 30, 022107.CrossRefGoogle Scholar
Etrati, A. & Frigaard, I. A. 2019 Laminar displacement flows in vertical ecentiric annuli: experiments and simulations. Paper OMAE2019-95180. In Proceedings of 38th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2019), Glasgow, UK.CrossRefGoogle Scholar
Fullmer, W. D., Ransom, V. H. & de Bertodano, M. A. L. 2014 Linear and nonlinear analysis of an unstable, but well-posed, one-dimensional two-fluid model for two-phase flow based on the inviscid Kelvin–Helmholtz instability. Nucl. Engng Des. 268, 173184.CrossRefGoogle Scholar
Guo, Y., Qi, J., Zheng, Y., Taoutaou, S., Wang, R., An, Y. & Guo, H. 2015 Cementing optimization through an enhanced ultrasonic imaging tool. Society of Petroleum Engineers Paper number SPE 176069.Google Scholar
Jakobsen, J., Sterri, N., Saasen, A., Aas, B., Kjosnes, I. & Vigen, A. 1991 Displacements in eccentric annuli during primary cementing in deviated wells. Society of Petroleum Engineers Paper number SPE 21686.CrossRefGoogle Scholar
Keller, S. R., Crook, R. J., Haut, R. C. & Kulakofaky, D. S. 1987 Deviated-wellbore cementing: part 1 - problems. J. Petrol. Tech. 39 (8), SPE paper 11979-PA.CrossRefGoogle Scholar
Kragset, S. & Skadsem, H.-J. 2018 Effect of buoyancy and inertia on viscoplastic fluid-fluid dsplacement in an inclined eccentric annulus with irregular section. Paper OMAE2018-77519. In Proceedings of 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2018), Madrid, Spain.CrossRefGoogle Scholar
Lund, B., Ytrehus, J. D., Taghipour, A., Divyankar, S. & Stavanger, A. 2018 Fluid-fluid displacement for primary cementing in deviated washout sections. Paper OMAE2018-78707. In Proceedings of 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2018), Madrid, Spain.CrossRefGoogle Scholar
Maleki, A. & Frigaard, I. A. 2017 Primary cementing of oil and gas wells in turbulent and mixed regimes. J. Engng Maths 107 (1), 201230.CrossRefGoogle Scholar
Maleki, A. & Frigaard, I. A. 2018 Turbulent displacement flows in primary cementing of oil and gas wells. Phys. Fluids 30, 123101.CrossRefGoogle Scholar
Maleki, A. & Frigaard, I. A. 2019 Comparing laminar and turbulent primary cementing flows. J. Petrol. Sci. Engng 177, 808821.CrossRefGoogle Scholar
Malekmohammadi, S., Carrasco-Teja, M., Storey, S., Frigaard, I. A. & Martinez, D. M. 2010 An experimental study of laminar displacement flows in narrow vertical eccentric annuli. J. Fluid Mech. 649, 371398.CrossRefGoogle Scholar
McLean, R. H., Manry, C. W. & Whitaker, W. W. 1967 Displacement mechanics in primary cementing. J. Petrol. Engng SPE paper 1488.Google Scholar
Nelson, E. B. 1990 Well Cementing. Schlumberger Educational Services.Google Scholar
Osayande, V., Isgenderov, I., Bogaerts, M., Kurawle, I. & Florez, P. 2004 Beating the odds with channeling in ERD well cementing: solution to persistent channeling problem. Society of Petroleum Engineers Paper number SPE 171271.Google Scholar
Pelipenko, S. & Frigaard, I. A. 2004 a On steady state displacements in primary cementing of an oil well. J. Engng Maths 48, 126.CrossRefGoogle Scholar
Pelipenko, S. & Frigaard, I. A. 2004 b Two-dimensional computational simulation of eccentric annular cementing displacements. IMA J. Appl. Maths 64, 557583.CrossRefGoogle Scholar
Pelipenko, S. & Frigaard, I. A. 2004 c Visco-plastic fluid displacements in near-vertical narrow eccentric annuli: prediction of travelling wave solutions and interfacial instability. J. Fluid Mech. 520, 343377.CrossRefGoogle Scholar
Picchi, D., Barmak, I., Ullmann, A. & Brauner, N. 2018 Stability of stratified two-phase channel flows of Newtonian/non-Newtonian shear-thinning fluids. Nucl. Engng Des. 99, 111131.Google Scholar
Picchi, D., Poesio, P., Ullmann, A. & Brauner, N. 2017 Characteristics of stratified flows of Newtonian/non-Newtonian shear-thinning fluids. Intl J. Multiphase Flow 97, 109133.CrossRefGoogle Scholar
Seon, T., Hulin, J. P., Salin, D., Perrin, B. & Hinch, E. J. 2005 Buoyancy driven miscible front dynamics in tilted tubes. Phys. Fluids 17, 031702.CrossRefGoogle Scholar
Seon, T., Znaien, J., Salin, D., Hulin, J. P., Hinch, E. J. & Perrin, B. 2007 Transient buoyancy-driven front dynamics in nearly horizontal tubes. Phys. Fluids 19, 123603.CrossRefGoogle Scholar
Skadsem, H. J., Kragset, S., Lund, B., Ytrehus, J. D. & Taghipour, A. 2019 Annular displacement in a highly inclined irregular wellbore: experimental and three-dimensional numerical simulations. J. Petrol. Sci. Engng 172, 9981013.CrossRefGoogle Scholar
Szabo, P. & Hassager, O. 1997 Displacement of one Newtonian fluid by another: density effects in axial annular flow. Intl J. Multiphase Flow 23 (1), 113129.CrossRefGoogle Scholar
Taghavi, S. M., Alba, K., Seon, T., Wielage-Burchard, K., Martinez, D. M. & Frigaard, I. A. 2012 Miscible displacement flows in near-horizontal ducts at low Atwood number. J. Fluid Mech. 696, 175214.CrossRefGoogle Scholar
Taghavi, S. M., Seon, T., Martinez, D. M. & Frigaard, I. A. 2010 Influence of an imposed flow on the stability of a gravity current in a near horizontal duct. Phys. Fluids 22, 031702.CrossRefGoogle Scholar
Tardy, P. M. J. 2018 A 3D model for annular displacements of wellbore completion fluids with casing movement. J. Petrol. Sci. Engng 162, 114136.CrossRefGoogle Scholar
Tardy, P. M. J. & Bittleston, S. H. 2016 A model for annular displacements of wellbore completion fluids involving casing movement. J. Petrol. Sci. Engng 126, 105123.CrossRefGoogle Scholar
Tardy, P., Flamant, N., Lac, E., Parry, A., Sri Sutama, C. & Baggini Almagro, S. 2017 New generation 3D simulator predicts realistic mud displacement in highly deviated and horizontal wells. Society of Petroleum Engineers Paper number SPE 184677.CrossRefGoogle Scholar
Tehrani, A., Bittleston, S. & Long, P. 1993 Flow instabilities during annular displacement of one non-Newtonian fluid by another. Exp. Fluids 14 (4), 246256.CrossRefGoogle Scholar
Tehrani, A., Ferguson, J. & Bittleston, S. 1992 Laminar displacement in annuli: a combined experimental and theoretical study. Society of Petroleum Engineers Paper number SPE 24569.CrossRefGoogle Scholar
Trudel, E., Bizhani, M., Zare, M. & Frigaard, I. A. 2019 Plug and abandonment practices and trends: a British Columbia perspective. J. Petrol. Sci. Engng 183, 106417.CrossRefGoogle Scholar
Vefring, E., Bjorkevoll, K., Hansen, S., Sterri, N., Saevareid, O., Aas, B. & Merlo, A. 1997 Optimization of displacement efficiency during primary cementing. Society of Petroleum Engineers Paper number SPE 39009.CrossRefGoogle Scholar
Zare, M., Roustaei, A. & Frigaard, I. A. 2017 Buoyancy effects on micro-annulus formation: Newtonian-Bingham fluid displacements in vertical channels. J. Non-Newtonian Fluid Mech. 247, 2240.CrossRefGoogle Scholar