Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T07:32:42.334Z Has data issue: false hasContentIssue false

Single-particle dynamics in a low-Reynolds-number fluid under spherical confinement

Published online by Cambridge University Press:  14 August 2023

Gaofeng Chen
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Xikai Jiang*
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
*
Email address for correspondence: xikaij@imech.ac.cn

Abstract

Non-colloidal dynamics of a single particle suspended in a low-Reynolds-number fluid under spherical confinement was studied numerically. We calculated hydrodynamic mobilities of a sphere, a prolate spheroid and an oblate spheroid parallel and transverse to the particle-cavity line of centres. The mobilities show maximum in the cavity centre and decay as the particle moves towards the no-slip wall. For prolate and oblate spheroids, their mobilities are also affected by the angle between the particle's axis of revolution and the particle-cavity line of centres due to particle anisotropy. It was observed that the effect of particle anisotropy becomes stronger as the confinement level increases. When the external force on the particle is not parallel or transverse to the particle-cavity line of centres, a drift velocity perpendicular to the force occurs because of the confinement-induced anisotropy of the mobility in the cavity. The normalized drift velocity depends on the particle location, size, shape and orientation of the non-spherical particle. We also studied the motion of a non-neutrally buoyant particle under external forces in a rotating flow inside the cavity. Cooperation between the external force, rotation-induced centrifugal or centripetal force and the force from particle–wall interactions leads to multiple modes of particle motion. A fundamental understanding of single-particle dynamics in this work forms the basis for studying more complex particle dynamics in intracellular transport, and can guide particle manipulation in microfluidic applications ranging from droplet-based microreactors to microfluidic encapsulation.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Quddus, N., Moussa, W.A. & Bhattacharjee, S. 2008 Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian–Eulerian method. J. Colloid Interface Sci. 317 (2), 620630.CrossRefGoogle Scholar
Aponte-Rivera, C., Su, Y. & Zia, R.N. 2018 Equilibrium structure and diffusion in concentrated hydrodynamically interacting suspensions confined by a spherical cavity. J. Fluid Mech. 836, 413450.CrossRefGoogle Scholar
Aponte-Rivera, C. & Zia, R.N. 2016 Simulation of hydrodynamically interacting particles confined by a spherical cavity. Phys. Rev. Fluids 1, 023301.CrossRefGoogle Scholar
Barakat, J.M., Ahmmed, S.M., Vanapalli, S.A. & Shaqfeh, E.S.G. 2019 Pressure-driven flow of a vesicle through a square microchannel. J. Fluid Mech. 861, 447483.CrossRefGoogle Scholar
Barakat, J.M. & Shaqfeh, E.S.G. 2018 The steady motion of a closely fitting vesicle in a tube. J. Fluid Mech. 835, 721761.CrossRefGoogle Scholar
Bretherton, F.P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (2), 284304.CrossRefGoogle Scholar
Cervantes-Martínez, A.E., Ramírez-Saito, A., Armenta-Calderón, R., Ojeda-López, M.A. & Arauz-Lara, J.L. 2011 Colloidal diffusion inside a spherical cell. Phys. Rev. E 83, 030402.CrossRefGoogle ScholarPubMed
Chen, G. & Jiang, X. 2022 Motion of a sphere and the suspending low-Reynolds-number fluid confined in a cubic cavity. Theor. Appl. Mech. Lett. 12 (4), 100352.CrossRefGoogle Scholar
Chen, S.B. 2011 Drag force of a particle moving axisymmetrically in open or closed cavities. J. Chem. Phys. 135 (1), 014904.CrossRefGoogle ScholarPubMed
Chow, E. & Skolnick, J. 2015 Effects of confinement on models of intracellular macromolecular dynamics. Proc. Natl Acad. Sci. USA 112 (48), 1484614851.CrossRefGoogle ScholarPubMed
Claeys, I.L. & Brady, J.F. 1989 Lubrication singularities of the grand resistance tensor for two arbitrary particles. J. Physicochem. Hydrodyn. 11, 261293.Google Scholar
Cox, R.G. & Mason, S.G. 1971 Suspended particles in fluid flow through tubes. Annu. Rev. Fluid Mech. 3 (1), 291316.CrossRefGoogle Scholar
Ekanayake, N.I.K., Berry, J.D. & Harvie, D.J.E. 2021 Lift and drag forces acting on a particle moving in the presence of slip and shear near a wall. J. Fluid Mech. 915, A103.CrossRefGoogle Scholar
Ekanayake, N.I.K., Berry, J.D., Stickland, A.D., Dunstan, D.E., Muir, I.L., Dower, S.K. & Harvie, D.J.E. 2020 Lift and drag forces acting on a particle moving with zero slip in a linear shear flow near a wall. J. Fluid Mech. 904, A6.CrossRefGoogle Scholar
Elowitz, M.B., Surette, M.G., Wolf, P.-E., Stock, J.B. & Leibler, S. 1999 Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181 (1), 197203.CrossRefGoogle ScholarPubMed
Faltas, M.S. & Saad, E.I. 2011 Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math. Meth. Appl. Sci. 34 (13), 15941605.CrossRefGoogle Scholar
Felderhof, B.U. & Sellier, A. 2012 Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell. J. Chem. Phys. 136 (5), 054703.CrossRefGoogle Scholar
Gallagher, M.T., Choudhuri, D. & Smith, D.J. 2019 Sharp quadrature error bounds for the nearest-neighbor discretization of the regularized Stokeslet boundary integral equation. SIAM J. Sci. Comput. 41 (1), B139B152.CrossRefGoogle Scholar
Ganatos, P., Weinbaum, S. & Pfeffer, R. 1982 Gravitational and zero-drag motion of a sphere of arbitrary size in an inclined channel at low Reynolds number. J. Fluid Mech. 124, 2743.CrossRefGoogle Scholar
Goldstein, R.E., Tuval, I. & van de Meent, J.-W. 2008 Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl Acad. Sci. USA 105 (10), 36633667.CrossRefGoogle ScholarPubMed
Gonzalez, E., Aponte-Rivera, C. & Zia, R.N. 2021 Impact of polydispersity and confinement on diffusion in hydrodynamically interacting colloidal suspensions. J. Fluid Mech. 925, A35.CrossRefGoogle Scholar
Griggs, A.J., Zinchenko, A.Z. & Davis, R.H. 2007 Low-Reynolds-number motion of a deformable drop between two parallel plane walls. Intl J. Multiphase Flow 33 (2), 182206.CrossRefGoogle Scholar
Guo, M., Ehrlicher, A.J., Jensen, M.H., Renz, M., Moore, J.R., Goldman, R.D., Lippincott-Schwartz, J., Mackintosh, F.C. & Weitz, D.A. 2014 Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158 (4), 822832.CrossRefGoogle ScholarPubMed
Hamilton, J.K., Gilbert, A.D., Petrov, P.G. & Ogrin, F.Y. 2018 Torque driven ferromagnetic swimmers. Phys. Fluids 30 (9), 092001.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Prentice-Hall.Google Scholar
Hernández-Ortiz, J.P., de Pablo, J.J. & Graham, M.D. 2007 Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. Phys. Rev. Lett. 98, 140602.CrossRefGoogle Scholar
Hinch, E.J. & Leal, L.G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52 (4), 683712.CrossRefGoogle Scholar
Hockney, R.W. & Eastwood, J.W. 1988 Computer Simulation Using Particles. Taylor & Francis.CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1989 The motion of a rigid body in viscous fluid bounded by a plane wall. J. Fluid Mech. 207, 2972.CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1994 Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J. Fluid Mech. 268, 267292.CrossRefGoogle Scholar
Ishimoto, K. 2019 Bacterial spinning top. J. Fluid Mech. 880, 620652.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Kabacaoğlu, G. & Biros, G. 2019 Sorting same-size red blood cells in deep deterministic lateral displacement devices. J. Fluid Mech. 859, 433475.CrossRefGoogle Scholar
Keh, H.J. & Lee, T.C. 2010 Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theor. Comput. Fluid Dyn. 24 (5), 497510.CrossRefGoogle Scholar
Khair, A.S. & Brady, J.F. 2008 Microrheology of colloidal dispersions: shape matters. J. Rheol. 52 (1), 165196.CrossRefGoogle Scholar
Khoo, J.H., Miller, H., Armitage, J.P. & Zhulin, I.B. 2022 Measurement of macromolecular crowding in rhodobacter sphaeroides under different growth conditions. mBio 13 (1), e0367221.CrossRefGoogle ScholarPubMed
Kim, S. 1985 Sedimentation of two arbitrarily oriented spheroids in a viscous fluid. Intl J. Multiphase Flow 11 (5), 699712.CrossRefGoogle Scholar
Kim, S. 1986 Singularity solutions for ellipsoids in low-Reynolds-number flows: with applications to the calculation of hydrodynamic interactions in suspensions of ellipsoids. Intl J. Multiphase Flow 12 (3), 469491.CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Kim, S., Wang, H., Yan, L., Zhang, X. & Cheng, Y. 2020 Continuous preparation of itraconazole nanoparticles using droplet-based microreactor. Chem. Engng J. 393, 124721.CrossRefGoogle Scholar
Konopka, M.C., Shkel, I.A., Cayley, S., Record, M.T. & Weisshaar, J.C. 2006 Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188 (17), 61156123.CrossRefGoogle ScholarPubMed
Kumar, A., Henríquez Rivera, R.G. & Graham, M.D. 2014 Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity. J. Fluid Mech. 738, 423462.CrossRefGoogle Scholar
Lavrenteva, O., Prakash, J. & Nir, A. 2016 Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow. Phys. Rev. E 93, 023105.CrossRefGoogle Scholar
Leal, L.G. & Hinch, E.J. 1972 The rheology of a suspension of nearly spherical particles subject to Brownian rotations. J. Fluid Mech. 55 (4), 745765.CrossRefGoogle Scholar
Lee, J. & Ladd, A.J.C. 2007 Particle dynamics and pattern formation in a rotating suspension. J. Fluid Mech. 577, 183209.CrossRefGoogle Scholar
Lee, T.C. & Keh, H.J. 2013 Slow motion of a spherical particle in a spherical cavity with slip surfaces. Intl J. Engng Sci. 69, 115.CrossRefGoogle Scholar
Lee, T.C., Long, D.S. & Clarke, R.J. 2016 Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics. J. Fluid Mech. 798, 812852.CrossRefGoogle Scholar
Leyrat-Maurin, A. & Barthes-Biesel, D. 1994 Motion of a deformable capsule through a hyperbolic constriction. J. Fluid Mech. 279, 135163.CrossRefGoogle Scholar
Li, J., Jiang, X., Singh, A., Heinonen, O.G., Hernández-Ortiz, J.P. & de Pablo, J.J. 2020 Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: spheres and cylinders. J. Chem. Phys. 152 (20), 204109.CrossRefGoogle Scholar
Liu, L., Xiang, N. & Ni, Z. 2020 Droplet-based microreactor for the production of micro/nano-materials. Electrophoresis 41 (10–11), 833851.CrossRefGoogle ScholarPubMed
Maheshwari, A.J., Sunol, A.M., Gonzalez, E., Endy, D. & Zia, R.N. 2019 Colloidal hydrodynamics of biological cells: a frontier spanning two fields. Phys. Rev. Fluids 4, 110506.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
van de Meent, J.-W., Sederman, A.J., Gladden, L.F. & Goldstein, R.E. 2010 Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J. Fluid Mech. 642, 514.CrossRefGoogle Scholar
Michaelides, E.E. 1997 Review—the transient equation of motion for particles, bubbles, and droplets. Trans. ASME J. Fluids Engng 119 (2), 233247.CrossRefGoogle Scholar
Mitchell, W.H. & Spagnolie, S.E. 2015 Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding. J. Fluid Mech. 772, 600629.CrossRefGoogle Scholar
Nguyen, H.-N. & Cortez, R. 2014 Reduction of the regularization error of the method of regularized Stokeslets for a rigid object immersed in a three-dimensional Stokes flow. Commun. Comput. Phys. 15 (1), 126152.CrossRefGoogle Scholar
O'Neill, M.E. & Majumdar, S.R. 1970 a Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I: the determination of exact solutions for any values of the ratio of radii and separation parameters. Z. Angew. Math. Phys. 21, 164179.CrossRefGoogle Scholar
O'Neill, M.E. & Majumdar, S.R. 1970 b Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part II: asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero. Z. Angew. Math. Phys. 21, 180187.CrossRefGoogle Scholar
Oseen, C.W. 1927 Neuere methoden und ergebnisse in der hydrodynamik, vol. 1. Akademische Verlagsgesellschaft.Google Scholar
Pasol, L., Martin, M., Ekiel-Jeżewska, M.L., Wajnryb, E., BŁawzdziewicz, J. & Feuillebois, F. 2011 Motion of a sphere parallel to plane walls in a Poiseuille flow. Application to field-flow fractionation and hydrodynamic chromatography. Chem. Engng Sci. 66 (18), 40784089.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press.CrossRefGoogle Scholar
Pranay, P., Anekal, S.G., Hernandez-Ortiz, J.P. & Graham, M.D. 2010 Pair collisions of fluid-filled elastic capsules in shear flow: effects of membrane properties and polymer additives. Phys. Fluids 22 (12), 123103.CrossRefGoogle Scholar
Rallabandi, B. 2021 Inertial forces in the Maxey–Riley equation in nonuniform flows. Phys. Rev. Fluids 6, L012302.CrossRefGoogle Scholar
Russel, W.B., Hinch, E.J., Leal, L.G. & Tieffenbruck, G. 1977 Rods falling near a vertical wall. J. Fluid Mech. 83 (2), 273287.CrossRefGoogle Scholar
Sellier, A. 2008 Slow viscous motion of a solid particle in a spherical cavity. Comput. Model. Engng Sci. 25 (3), 165180.Google Scholar
Shang, L., Cheng, Y. & Zhao, Y. 2017 Emerging droplet microfluidics. Chem. Rev. 117 (12), 79648040.CrossRefGoogle ScholarPubMed
Shinohara, M. 1996 Experiments on the lateral velocity of two particles sedimenting symmetrically about the axis of a cylinder. J. Phys. Soc. Japan 65 (12), 38583861.CrossRefGoogle Scholar
Shinohara, M. & Hashimoto, H. 1979 The lateral force on a small sphere sedimenting in a viscous fluid bounded by a cylindrical wall. J. Phys. Soc. Japan 46 (1), 320327.CrossRefGoogle Scholar
Singh, P. 2022 Extreme value statistics and arcsine laws for heterogeneous diffusion processes. Phys. Rev. E 105, 024113.CrossRefGoogle ScholarPubMed
Skolnick, J. 2016 Perspective: on the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules. J. Chem. Phys. 145 (10), 100901.CrossRefGoogle ScholarPubMed
Smith, D.J., Montenegro-Johnson, T.D. & Lopes, S.S. 2019 Symmetry-breaking cilia-driven flow in embryogenesis. Annu. Rev. Fluid Mech. 51 (1), 105128.CrossRefGoogle Scholar
Staben, M.E., Zinchenko, A.Z. & Davis, R.H. 2003 Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids 15 (6), 17111733.CrossRefGoogle Scholar
Staben, M.E., Zinchenko, A.Z. & Davis, R.H. 2006 Dynamic simulation of spheroid motion between two parallel plane walls in low-Reynolds-number Poiseuille flow. J. Fluid Mech. 553, 187226.CrossRefGoogle Scholar
Sun, W. 2021 Surface band segregation and internal convection in rotating sphere densely filled with granular material: experiments. Phys. Fluids 33 (12), 123319.CrossRefGoogle Scholar
Sunol, A.M. & Zia, R.N. 2023 Confined Brownian suspensions: equilibrium diffusion, thermodynamics, and rheology. J. Rheol. 67 (2), 433460.CrossRefGoogle Scholar
Swan, J.W. & Brady, J.F. 2010 Particle motion between parallel walls: hydrodynamics and simulation. Phys. Fluids 22 (10), 103301.CrossRefGoogle Scholar
Tsai, S.-T. 2022 Sedimentation motion of sand particles in moving water (I): the resistance on a small sphere moving in non-uniform flow. Theor. Appl. Mech. Lett. 12 (6), 100392.CrossRefGoogle Scholar
Vitoshkin, H., Yu, H.-Y., Eckmann, D.M., Ayyaswamy, P.S. & Radhakrishnan, R. 2016 Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall. Phys. Rev. Fluids 1, 054104.CrossRefGoogle ScholarPubMed
Wang, H. & Hu, G. 2017 P granules phase transition induced by cytoplasmic streaming in Caenorhabditis elegans embryo. Sci. China Phys. Mech. Astron. 60, 018711.CrossRefGoogle Scholar
Xiang, L., Chen, K., Yan, R., Li, W. & Xu, K. 2020 Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. Nat. Meth. 17 (5), 524530.CrossRefGoogle ScholarPubMed
Ye, S., Shao, X., Yu, Z. & Yu, W. 2014 Effects of the particle deformability on the critical separation diameter in the deterministic lateral displacement device. J. Fluid Mech. 743, 6074.CrossRefGoogle Scholar
Zhang, Y., de Pablo, J.J. & Graham, M.D. 2012 An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: application to DNA flowing through a nanoslit with embedded nanopits. J. Chem. Phys. 136 (1), 014901.CrossRefGoogle ScholarPubMed
Zhao, B., Lauga, E. & Koens, L. 2019 Method of regularized Stokeslets: flow analysis and improvement of convergence. Phys. Rev. Fluids 4, 084104.CrossRefGoogle Scholar
Zhao, X., Li, J., Jiang, X., Karpeev, D., Heinonen, O., Smith, B., Hernandez-Ortiz, J.P. & de Pablo, J.J. 2017 Parallel $O(N)$ Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries. J. Chem. Phys. 146 (24), 244114.CrossRefGoogle ScholarPubMed
Zuk, P.J., Wajnryb, E., Mizerski, K.A. & Szymczak, P. 2014 Rotne–Prager–Yamakawa approximation for different-sized particles in application to macromolecular bead models. J. Fluid Mech. 741, R5.CrossRefGoogle Scholar

Chen and Jiang Movie 1

Motion of spherical particle under the centrifugal force, which corresponds to blue circles in Fig. 10a.
Download Chen and Jiang Movie 1(Video)
Video 413.6 KB

Chen and Jiang Movie 2

Motion of spherical particle under the centripetal force, which corresponds to red circles in Fig. 10b.
Download Chen and Jiang Movie 2(Video)
Video 465.9 KB

Chen and Jiang Movie 3

Motion of spherical particle under the centrifugal force, which corresponds to Fig. 11.

Download Chen and Jiang Movie 3(Video)
Video 628 KB

Chen and Jiang Movie 4

Motion of spherical particle under the centrifugal force, which corresponds to Fig. 12a and Fig. 12b.

Download Chen and Jiang Movie 4(Video)
Video 655.6 KB

Chen and Jiang Movie 5

Motion of spherical particle under the centrifugal force, which corresponds to Fig. 12c and Fig. 12d.

Download Chen and Jiang Movie 5(Video)
Video 319.2 KB

Chen and Jiang Movie 6

Motion of prolate spheroid under the centrifugal force, which corresponds to Fig. 13b.

Download Chen and Jiang Movie 6(Video)
Video 493.1 KB

Chen and Jiang Movie 7

Motion of prolate spheroid under the centrifugal force, which corresponds to Fig. 13d.

Download Chen and Jiang Movie 7(Video)
Video 311.6 KB

Chen and Jiang Movie 8

Motion of oblate spheroid under the centrifugal force, which corresponds to Fig. 13e.

Download Chen and Jiang Movie 8(Video)
Video 358 KB

Chen and Jiang Movie 9

Motion of prolate spheroid under the centripetal force, which corresponds to Fig. 14a.

Download Chen and Jiang Movie 9(Video)
Video 424.5 KB

Chen and Jiang Movie 10

Motion of oblate spheroid under the centripetal force, which corresponds to Fig. 14c.

Download Chen and Jiang Movie 10(Video)
Video 572.7 KB