Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T09:32:31.032Z Has data issue: false hasContentIssue false

Streaming controlled by meniscus shape

Published online by Cambridge University Press:  12 May 2020

Y. Huang*
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai200092, China School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook11794, USA
C. L. P. Wolfe
Affiliation:
School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook11794, USA
J. Zhang
Affiliation:
NYU-ECNU Institute of Physics, New York University Shanghai, Shanghai 200062, China Department of Physics & Courant Institute, New York University, New York 10012, USA
J.-Q. Zhong*
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai200092, China
*
Email addresses for correspondence: yicheng.huang@stonybrook.edu, jinqiang@tongji.edu.cn
Email addresses for correspondence: yicheng.huang@stonybrook.edu, jinqiang@tongji.edu.cn

Abstract

Surface waves called meniscus waves often appear in systems that are close to the capillary length scale. Since the meniscus shape determines the form of the meniscus waves, the resulting streaming circulation has features distinct from those caused by other capillary–gravity waves recently reported in the literature. In the present study, we produce symmetric and antisymmetric meniscus shapes by controlling boundary wettability and excite meniscus waves by oscillating the meniscus vertically. The symmetric and antisymmetric configurations produce different surface capillary–gravity wave modes and streaming flow structures. The root-mean-square speed of the streaming circulation increases with the second power of the forcing amplitude in both configurations. The flow symmetry of streaming circulation is retained under the symmetric meniscus, while it is lost under the antisymmetric meniscus. The streaming circulation pattern beneath the meniscus observed in our experiments is qualitatively explained using the method introduced by Nicolás & Vega (Fluid Dyn. Res., vol. 32 (4), 2003, pp. 119–139) and Gordillo & Mujica (J. Fluid Mech., vol. 754, 2014, pp. 590–604).

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Carrión, L. M., Herrada, M. A., Montanero, J. M. & Vega, J. M. 2017 Mean flow produced by small-amplitude vibrations of a liquid bridge with its free surface covered with an insoluble surfactant. Phys. Rev. E 96, 033101.Google ScholarPubMed
Chen, P., Luo, Z., Güven, S., Tasoglu, S., Ganesan, A. V., Weng, A. & Demirci, U. 2014 Microscale assembly directed by liquid-based template. Adv. Mater. 26, 59365941.CrossRefGoogle ScholarPubMed
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.CrossRefGoogle Scholar
Faraday, M. 1831 XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Proc. R. Soc. Lond. A 121, 299340.Google Scholar
Francois, N., Xia, H., Punzmann, H., Fontana, P. W. & Shats, M. 2017 Wave-based liquid-interface metamaterials. Nat. Commun. 8, 14325.CrossRefGoogle ScholarPubMed
Gordillo, L. & Mujica, N. 2014 Measurement of the velocity field in parametrically excited solitary waves. J. Fluid Mech. 754, 590604.CrossRefGoogle Scholar
Henderson, D. M. & Segur, H. 2013 The role of dissipation in the evolution of ocean swell. J. Geophys. Res. 118 (10), 50745091.CrossRefGoogle Scholar
Holmedal, L. E. & Myrhaug, D. 2009 Wave-induced steady streaming, mass transport and net sediment transport in rough turbulent ocean bottom boundary layers. Cont. Shelf Res. 29, 911926.CrossRefGoogle Scholar
Lesser, M. B. & Berkley, D. A. 1972 Fluid mechanics of the cochlea. Part 1. J. Fluid Mech. 51, 497512.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Proc. R. Soc. Lond. A 245, 535581.Google Scholar
Lucassen-Reynders, E. H. & Lucassen, J. 1970 Properties of capillary waves. Adv. Colloid Interface Sci. 2, 347395.CrossRefGoogle Scholar
Martín, E. & Vega, J. M. 2006 The effect of surface contamination on the drift instability of standing Faraday waves. J. Fluid Mech. 546, 203225.CrossRefGoogle Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.CrossRefGoogle Scholar
Moisy, F., Bouvard, J. & Herreman, W. 2018 Counter-rotation in an orbitally shaken glass of beer. Eur. Phys. Lett. 122, 34002.Google Scholar
Nicolás, J. A. & Vega, J. M. 2003 Three-dimensional streaming flows driven by oscillatory boundary layers. Fluid Dyn. Res. 32 (4), 119139.CrossRefGoogle Scholar
Périnet, N., Gutiérrez, P., Urra, H., Mujica, N. & Gordillo, L. 2017 Streaming patterns in Faraday waves. J. Fluid Mech. 819, 285310.CrossRefGoogle Scholar
Perlin, M. & Schultz, W. W. 2000 Capillary effects on surface waves. Annu. Rev. Fluid Mech. 32, 241274.CrossRefGoogle Scholar
Punzmann, H., Francois, N., Xia, H., Falkovich, G. & Shats, M. 2014 Generation and reversal of surface flows by propagating waves. Nat. Phys. 10, 658663.CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.CrossRefGoogle Scholar
Schneck, D. J. & Walburn, F. J. 1976 Pulsatile blood flow in a channel of small exponential divergencepart. Part II. Steady streaming due to the interaction of viscous effects with convected inertia. Trans. ASME J. Fluids Engng 98, 707713.CrossRefGoogle Scholar
Strickland, S. L., Shearer, M. & Daniels, K. E. 2015 Spatiotemporal measurement of surfactant distribution on gravity–capillary waves. J. Fluid Mech. 777, 523543.CrossRefGoogle Scholar
Yi, S., Ding, H. & Spelt, P. D. M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.Google Scholar

Huang et al. supplementary movie 1

Experimental movies for the streaming circulations produced with a symmetric meniscus (movie 1.avi). It corresponds to Fig.3 of ‘Streaming controlled by meniscus shape’ by Y. Huang, C.P. Wolfe, J. Zhang and J.-Q. Zhong. The driving frequency is f0=8 Hz. The driving amplitude is a0=0.2g0. When played at 10 frames per second, the movie runs at 0.8 times real speed.

Download Huang et al. supplementary movie 1(Video)
Video 1.9 MB

Huang et al. supplementary movie 2

Experimental movies for the streaming circulations produced with an antisymmetric meniscus (movie 2.avi). It corresponds to Fig.4 of ‘Streaming controlled by meniscus shape’ by Y. Huang, C.P. Wolfe, J. Zhang and J.-Q. Zhong. The driving frequency is f0=8 Hz. The driving amplitude is a0=0.2g0. When played at 10 frames per second, the movie runs at 0.8 times real speed.

Download Huang et al. supplementary movie 2(Video)
Video 3.6 MB