Published online by Cambridge University Press: 09 January 2013
This paper analyses subcritical transition to instability, also known as triggering in thermoacoustic systems, with an example of a Rijke tube model with an explicit time delay. Linear stability analysis of the thermoacoustic system is performed to identify parameter values at the onset of linear instability via a Hopf bifurcation. We then use the method of multiple scales to recast the model of a general thermoacoustic system near the Hopf point into the Stuart–Landau equation. From the Stuart–Landau equation, the relation between the nonlinearity in the model and the criticality of the ensuing bifurcation is derived. The specific example of a model for a horizontal Rijke tube is shown to lose stability through a subcritical Hopf bifurcation as a consequence of the nonlinearity in the model for the unsteady heat release rate. Analytical estimates are obtained for the triggering amplitudes close to the critical values of the bifurcation parameter corresponding to loss of linear stability. The unstable limit cycles born from the subcritical Hopf bifurcation undergo a fold bifurcation to become stable and create a region of bistability or hysteresis. Estimates are obtained for the region of bistability by locating the fold points from a fully nonlinear analysis using the method of harmonic balance. These analytical estimates help to identify parameter regions where triggering is possible. Results obtained from analytical methods compare reasonably well with results obtained from both experiments and numerical continuation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.