Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T03:15:35.509Z Has data issue: false hasContentIssue false

Tropical cyclogenesis and vertical shear in a moist Boussinesq model

Published online by Cambridge University Press:  12 July 2012

Qiang Deng
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
Leslie Smith*
Affiliation:
Departments of Mathematics and Engineering Physics, University of Wisconsin, Madison, WI 53706, USA
Andrew Majda
Affiliation:
Department of Mathematics and the Center for Atmosphere Ocean Science, The Courant Institute for Mathematical Sciences, New York University, NY 10012, USA
*
Email address for correspondence: lsmith@math.wisc.edu

Abstract

Tropical cyclogenesis is studied in the context of idealized three-dimensional Boussinesq dynamics with perhaps the simplest possible model for bulk cloud physics. With low-altitude input of water vapour on realistic length and time scales, numerical simulations capture the formation of vortical hot towers. From measurements of water vapour, vertical velocity, vertical vorticity and rain, it is demonstrated that the structure, strength and lifetime of the hot towers are similar to results from models including more detailed cloud microphysics. The effects of low-altitude vertical shear are investigated by varying the initial zonal velocity profile. In the presence of weak low-level vertical shear, the hot towers retain the low-altitude monopole cyclonic structure characteristic of the zero-shear case (starting from zero velocity). Some initial velocity profiles with small vertical shear can have the effect of increasing cyclonic predominance of individual hot towers in a statistical sense, as measured by the skewness of vertical vorticity. Convergence of horizontal winds in the atmospheric boundary layer is mimicked by increasing the frequency of the moisture forcing in a horizontal subdomain. When the moisture forcing is turned off, and again for zero shear or weak low-level shear, merger of cyclonic activity results in the formation of a larger-scale cyclonic vortex. An effect of the shear is to limit the vertical extent of the resulting emergent moist vortex. For stronger low-altitude vertical shear, the individual hot towers have a low-altitude vorticity dipole rather than a cyclonic monopole. The dipoles are not conducive to the formation of larger-scale vortices, and thus sufficiently strong low-level shear prevents the vortical-hot-tower route to cyclogenesis. The results indicate that the simplest condensation and evaporation schemes are useful for exploratory numerical simulations aimed at better understanding of competing effects such as low-level moisture and vertical shear.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bryan, G. H. & Fritsch, J. M. 2002 A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev. 130, 29172928.2.0.CO;2>CrossRefGoogle Scholar
2. Charney, J. G. & Eliassen, A. 1964 On the growth of the hurricane depression. J. Atmos. Sci. 21, 6875.2.0.CO;2>CrossRefGoogle Scholar
3. Curry, J. A. & Webster, P. J. 1999 Thermodynamics of Atmospheres and Oceans. Academic.Google Scholar
4. Davis, C. A. & Bosart, L. F. 2004 The TT problem: forecasting the tropical transition of cyclones. Bull. Am. Meteorol. Soc. 85, 16571662.Google Scholar
5. Emanuel, K. A. 1986 An air–sea interaction theory for tropical cyclones. Part 1. Steady state maintenance. J. Atmos. Sci. 43, 585604.2.0.CO;2>CrossRefGoogle Scholar
6. Emanuel, K. A. 1989 The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 46, 34313456.2.0.CO;2>CrossRefGoogle Scholar
7. Emanuel, K. A. 2003 Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75104.CrossRefGoogle Scholar
8. Frierson, D. M. W., Pauluis, O. & Majda, A. J. 2004 Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci. 2, 591626.CrossRefGoogle Scholar
9. Grabowski, W. W. & Smolarkiewicz, P. K. 1996 Two-time-level semi-Lagrangian modelling of precipitating clouds. Mon. Wea. Rev. 124, 487497.2.0.CO;2>CrossRefGoogle Scholar
10. Grabowski, W. W. & Clark, T. L. 1991 Cloud-environment interface instability: rising thermal calculations in two spatial dimensions. J. Atmos. Sci. 48, 527546.2.0.CO;2>CrossRefGoogle Scholar
11. Grabowski, W. W. & Clark, T. L. 1993a Cloud-environment interface instability. Part 2. Extension to three spatial dimensions. J. Atmos. Sci. 50, 555573.2.0.CO;2>CrossRefGoogle Scholar
12. Grabowski, W. W. & Clark, T. L. 1993b Cloud-environment interface instability. Part 3. Direct influence of environmental shear. J. Atmos. Sci. 50, 38213828.2.0.CO;2>CrossRefGoogle Scholar
13. Gray, W. M. 1968 Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev. 96, 669700.2.0.CO;2>CrossRefGoogle Scholar
14. Hendricks, E. A., Montgomery, M. T. & Davis, C. A. 2004 The role of vortical hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci. 61, 12091232.2.0.CO;2>CrossRefGoogle Scholar
15. Hendricks, E. A. & Montgomery, M. T. 2006 Rapid scan views of convectively generated mesovortices in sheared tropical cyclone Gustav (2002). Weather Forecast. 21, 10411050.CrossRefGoogle Scholar
16. Houze, R. A. Jr., Lee, W.-C. & Bell, M. M. 2009 Convective contribution to the genesis of hurricane Ophelia (2005). Mon. Wea. Rev. 137, 27782800.CrossRefGoogle Scholar
17. Klein, R. & Majda, A. J. 2006 Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525551.CrossRefGoogle Scholar
18. Majda, A. 2002 Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Institute of Mathematical Sciences.Google Scholar
19. Majda, A.J. 2007 Multiscale models with moisture and systematic strategies for superparameterization. J. Atmos. Sci. 64, 27262734.CrossRefGoogle Scholar
20. Majda, A. J., Xing, Y. & Mohammadian, M. 2008 Vertically sheared horizontal flow with mass sources: a canonical balanced model. Geophys. Astrophys. Fluid. Dyn. 102, 543591.CrossRefGoogle Scholar
21. Majda, A.J. & Xing, Y. 2010 New multi-scale models on mesoscales and squall lines. Comm. Math. Sci. 8, 113134.CrossRefGoogle Scholar
22. Majda, A. J., Xing, Y. & Mohammadian, M. 2010 Moist multi-scale models for the hurricane embryo. J. Fluid Mech. 657, 478601.CrossRefGoogle Scholar
23. Molinari, J., Vollaro, D. & Corbosiero, K. L. 2004 Tropical cyclone formation in a sheared environment: a case study. J. Atmos. Sci. 61, 24932509.CrossRefGoogle Scholar
24. Montgomery, M. T., Nicholls, M. E., Cram, T. A. & Saunders, A. B. 2006 A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci. 63, 355386.CrossRefGoogle Scholar
25. Montgomery, M. T. & Smith, R. K. 2011 Paradigms for tropical-cyclone intensification. Q. J. R. Meteorol. Soc. 137, 131.Google Scholar
26. Ooyama, K. 1964 A dynamical model for the study of tropical cyclone development. Geophys. Int. 4, 187198.Google Scholar
27. Ooyama, K. 1969 Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 340.2.0.CO;2>CrossRefGoogle Scholar
28. Ooyama, K. 1982 Conceptual evolution of the theory and modelling of the tropical cyclone. J. Meteor. Soc. Japan 60, 369379.CrossRefGoogle Scholar
29. Remmel, M. & Smith, L. M. 2009 New intermediate models for rotating shallow water and an investigation of the preference for anticyclones. J. Fluid Mech. 635, 321359.CrossRefGoogle Scholar
30. Riehl, H. & Malkus, J. S. 1958 On the heat balance of the equatorial trough zone. Geophysica 6, 503538.Google Scholar
31. Riemer, M., Montgomery, M. T. & Nicholls, M. E. 2010 A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys. 10, 31633188.CrossRefGoogle Scholar
32. Rotunno, R. & Emanuel, K. 1987 An air–sea interaction theory for tropical cyclones. Part 2. Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542561.2.0.CO;2>CrossRefGoogle Scholar
33. Simpson, J., Halverson, J. B., Ferrier, B. S., Petersen, W. A., Simpson, R. H., Blakeslee, R. & Durden, S. L. 1998 On the role of hot towers in tropical cyclone formation. Meteorol. Atmos. Phys. 67, 1535.CrossRefGoogle Scholar
34. Smith, L. M. & Lee, Y. 2005 On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number. J. Fluid Mech. 535, 111142.CrossRefGoogle Scholar
35. Spyksma, K., Bartello, P. & Yau, M. K. 2006 A Boussinesq moist turbulence model. J. Turbul. 7, 124.CrossRefGoogle Scholar
36. Sukhatme, J., Majda, A. J. & Smith, L. M. 2012 Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows. Phys. Fluids 24, 036602.CrossRefGoogle Scholar
37. Sukhatme, J. & Smith, L. M. 2007 Self-similarity in decaying two-dimensional stably stratified adjustment. Phys. Fluids 19, 036603.CrossRefGoogle Scholar
38. Wissmeier, U. & Smith, R. K. 2011 Tropical-cyclone intensification: the effects of ambient vertical vorticity. Q. J. R. Meteorol. Soc. 137, 854857.CrossRefGoogle Scholar