Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T02:08:09.969Z Has data issue: false hasContentIssue false

A universal Strouhal number for the ‘locking-on’ of vortex shedding to the vibrations of bluff cylinders

Published online by Cambridge University Press:  12 April 2006

Owen M. Griffin
Affiliation:
Ocean Technology Division, Naval Research Laboratory, Washington D.C. 20375

Abstract

It is well known that the vortices shed from a circular cylinder lock on in frequency to the vibrations when the cylinder is forced to vibrate or is naturally excited to sufficient amplitudes by flow-induced forces. This paper presents a model for a universal wake Strouhal number, valid in the subcritical range of Reynolds numbers, for both forced and vortex-excited oscillations in the locking-on regime. The Strouhal numbers thus obtained are constant at St* = 0·178 over the range of wake Reynolds numbers Re* = 700-5 × 104. This value is in good agreement with the results obtained by Roshko (1954a) and Bearman (1967) for stationary circular cylinders and other bluff bodies in the same range of Reynolds numbers. A correspondence between the amplification of the cylinder base pressure, drag and vortex circulation is demonstrated over a wide range of frequencies and for vibration amplitudes up to a full cylinder diameter (peak to peak). The fraction ε of the shed vorticity in the individual vortices is found to be dependent upon the base-pressure parameter K = (1 − Cpb)½. Consequently, ε is also a function of the amplitude and frequency of the vibrations in the locking-on regime.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearman, P. W. 1967 J. Fluid Mech. 28, 625641.
Bearman, P. W. & Davies, M. E. 1975 Proc. Conf. Wind Effects on Structures, London.
Berger, E. W. & Wille, R. 1972 Ann. Rev. Fluid Mech. 4, 313340.
Calvert, J. R. 1967 J. Fluid Mech. 27, 273289.
Davies, M. E. 1976 J. Fluid Mech. 75, 209231.
Diana, G. & Falco, M. 1971 Meccanica 6, 922.
Griffin, O. M. 1971 Trans. A.S.M.E., J. Appl. Mech. 38, 729738.
Griffin, O. M. 1972 Trans. A.S.M.E., J. Engng Indust. 94, 539547.
Griffin, O. M. & Ramberg, S. E. 1974 J. Fluid Mech. 66, 553576.
Griffin, O. M. & Ramberg, S. E. 1975 J. Fluid Mech. 69, 721728.
Griffin, O. M., Skop, R. A. & Koopmann, G. H. 1973 J. Sound Vib. 31, 235249.
Griffin, O. M. & Votaw, C. W. 1972 J. Fluid Mech. 55, 3148.
Honji, H. & Taneda, S. 1968 Rep. Res. Inst. Appl. Mech., Kyushu Univ. 16, 211222.
Koopmann, G. H. 1967 J. Fluid Mech. 28, 501512.
Mccroskey, W. J. 1977 Trans. A.S.M.E., J. Fluids Engng 99, 839 (Freeman Scholar Lecture, 1976 A.S.M.E. Winter Ann. Meeting).
Meyers, D. W. 1975 M.S. thesis, Naval Postgraduate School, Monterey.
Naudascher, E. (ed.) 1974 Flow-Induced Structural Vibrations. Springer.
Ramberg, S. E. & Griffin, O. M. 1974 Trans. A.S.M.E., J. Fluids Engng 96, 317322.
Ramberg, S. E. & Griffin, O. M. 1976 Naval Res. Lab. Wash. Rep. no. 7945.
Richter, A. & Naudascher, E. 1976 J. Fluid Mech. 76, 561576.
Roshko, A. 1954a N.A.C.A. Tech. Note no. 3169.
Roshko, A. 1954b N.A.C.A. Tech. Note no. 3168.
Roshko, A. 1955 J. Aero. Sci. 22, 124132.
Roshko, A. 1961 J. Fluid Mech. 10, 345356.
Simmons, J. E. L. 1977 Aero. Quart. 28, 1520.
Stansby, P. K. 1976 Proc. A.S.C.E., J. Engng Mech. 104, 591600.
Tanida, Y., Okajima, A. & Watanabe, Y. 1973 J. Fluid Mech. 61, 769784.
Toebes, G. H. 1969 Trans. A.S.M.E., J. Basic Engng 91, 493505.
Wille, R. 1974 In Flow-Induced Structural Vibrations (ed. E. Naudascher), pp. 116. Springer.