Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T12:22:12.608Z Has data issue: false hasContentIssue false

Velocity statistics inside coherent vortices generated by the inverse cascade of 2-D turbulence

Published online by Cambridge University Press:  15 November 2016

I. V. Kolokolov*
Affiliation:
Landau Institute for Theoretical Physics, RAS, 142432, Ak. Semenova 1-A, Chernogolovka, Moscow region, Russia NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow, Russia
V. V. Lebedev
Affiliation:
Landau Institute for Theoretical Physics, RAS, 142432, Ak. Semenova 1-A, Chernogolovka, Moscow region, Russia NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow, Russia
*
Email address for correspondence: igor.kolokolov@gmail.com

Abstract

We analyse velocity fluctuations inside coherent vortices generated as a result of the inverse cascade in the two-dimensional (2-D) turbulence in a finite box. As we demonstrated in Kolokolov & Lebedev (Phys. Rev. E, vol. 93, 2016, 033104), the universal velocity profile, established in Laurie et al. (Phys. Rev. Lett., vol. 113, 2014, 254503), corresponds to the passive regime of the flow fluctuations. This property enables one to calculate correlation functions of the velocity fluctuations in the universal region. We present the results of the calculations that demonstrate a non-trivial scaling of the structure function. In addition the calculations reveal strong anisotropy of the structure function.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, 233239.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Borue, V. 1994 Inverse energy cascade in stationary two-dimensional homogeneous turbulence. Phys. Rev. Lett. 72, 14751478.CrossRefGoogle ScholarPubMed
Buschmann, M. & Gad-el-Hak, M. 2003 Debate concerning the mean-velocity profile of a turbulent boundary layer. AIAA 41, 4.CrossRefGoogle Scholar
Chertkov, M., Connaughton, C., Kolokolov, I. & Lebedev, V. 2007 Dynamics of energy condensation in two-dimensional turbulence. Phys. Rev. Lett. 99, 084501.CrossRefGoogle ScholarPubMed
Falkovich, G. 2016 Interaction between mean flow and turbulence in two dimensions. Proc. R. Soc. Lond. A 472, 20160287.Google ScholarPubMed
Falkovich, G. & Lebedev, V. 1994a Nonlocal vorticity cascade in 2 dimensions. Phys. Rev. E 49, R1800R1804.Google Scholar
Falkovich, G. & Lebedev, V. 1994b Universal direct cascade in 2-dimensional turbulence. Phys. Rev. E 50, 38833899.Google Scholar
Falkovich, G. & Lebedev, V. 2011 Vorticity statistics in the direct cascade of two-dimensional turbulence. Phys. Rev. E 83, 045301(R).Google ScholarPubMed
Francois, N., Xia, H., Punzmann, H., Ramsden, S. & Shats, M. 2014 Three-dimensional fluid motion in Faraday waves: creation of vorticity and generation of two-dimensional turbulence. Phys. Rev. X 4, 021021.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frishman, A., Laurie, J. & Falkovich, G.2016 Jets or vortices – what flows are generated by an inverse turbulent cascade? arXiv:1608.04628v1 [nlin.CD].CrossRefGoogle Scholar
von Kameke, A., Huhn, F., Fernandez-Garsia, G., Munuzuri, A. P. & Perez-Munuzuri, V. 2011 Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. Phys. Rev. Lett. 107, 074502.CrossRefGoogle Scholar
Kolokolov, I. V. & Lebedev, V. V. 2016 Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box. Phys. Rev. E 93, 033104.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.CrossRefGoogle Scholar
Kraichnan, R. H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525535.CrossRefGoogle Scholar
Kraichnan, R. H. 1975 Statistical dynamics of two-dimensional flow. J. Fluid Mech. 67, 155175.CrossRefGoogle Scholar
Laurie, J., Boffetta, G., Falkovich, G., Kolokolov, I. & Lebedev, V. 2014 Universal profile of the vortex condensate in two-dimensional turbulence. Phys. Rev. Lett. 113, 254503.CrossRefGoogle ScholarPubMed
Leith, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671673.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, Vol. 1: Mechanics of Turbulence (ed. Limley, J. L.), chap. 3, Dover.Google Scholar
Smith, L. M. & Yakhot, V. 1993 Bose-condensation and small-scale structure generation in a random force driven 2d turbulence. Phys. Rev. Lett. 71, 352355.CrossRefGoogle Scholar
Smith, L. M. & Yakhot, V. 1994 Finite-size effects in forced, two-dimensional turbulence. J. Fluid Mech. 274, 115138.CrossRefGoogle Scholar
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.CrossRefGoogle Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.CrossRefGoogle Scholar
Sturrock, P. A. 1996 Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas. Cambridge University Press.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Xia, H., Shats, M. & Falkovich, G. 2009 Spectrally condensed turbulence in thin layers. Phys. Fluids 21, 125101.CrossRefGoogle Scholar