Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-21T17:57:45.928Z Has data issue: false hasContentIssue false

Viscous transport in eroding porous media

Published online by Cambridge University Press:  22 April 2020

Shang-Huan Chiu*
Affiliation:
Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
M. N. J. Moore
Affiliation:
Department of Mathematics and Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, FL 32306, USA
Bryan Quaife*
Affiliation:
Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, FL 32306, USA
*
Present address: Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
Email address for correspondence: bquaife@fsu.edu

Abstract

Transport of viscous fluid through porous media is a direct consequence of the pore structure. Here we investigate transport through a specific class of two-dimensional porous geometries, namely those formed by fluid-mechanical erosion. We investigate the tortuosity and dispersion by analyzing the first two statistical moments of tracer trajectories. For most initial configurations, tortuosity decreases in time as a result of erosion increasing the porosity. However, we find that tortuosity can also increase transiently in certain cases. The porosity-tortuosity relationships that result from our simulations are compared with models available in the literature. Asymptotic dispersion rates are also strongly affected by the erosion process, as well as by the number and distribution of the eroding bodies. Finally, we analyze the pore size distribution of an eroding geometry. The simulations are performed by combining a boundary integral equation solver for the fluid equations, a second-order stable time-stepping method to simulate erosion, and high-order numerical methods to stably and accurately resolve nearly touching eroded bodies and particle trajectories near the eroding bodies.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alim, K., Parsa, S., Weitz, D. A. & Brenner, M. P. 2017 Local pore size correlations determine flow distributions in porous media. Phys. Rev. Lett. 119, 144501.CrossRefGoogle ScholarPubMed
Allen, E. J. 2019 An SDE model for deterioration of rock surfaces. Stochastic Anal. Appl. 37 (6), 10121027.CrossRefGoogle Scholar
Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. 2002 Flow and storage in groundwater systems. Science 296 (5575), 19851990.CrossRefGoogle ScholarPubMed
Ambrose, D. M., Siegel, M. & Tlupova, S. 2013 A small-scale decomposition for 3D boundary integral computations with surface tension. J. Comput. Phys. 247, 168191.CrossRefGoogle Scholar
Amin, K., Huang, J. M., Hu, K. J., Zhang, J. & Ristroph, L. 2019 The role of shape-dependent flight stability in the origin of oriented meteorites. Proc. Natl Acad. Sci. USA 116 (33), 1618016185.CrossRefGoogle ScholarPubMed
de Anna, P., Borgne, T. L., Dentz, M., Tartakovsky, A. M., Bolster, D. & Davy, P. 2013 Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110 (18), 184502.CrossRefGoogle ScholarPubMed
de Anna, P., Quaife, B., Biros, G. & Juanes, R. 2018 Prediction of velocity distribution from pore structure in simple porous media. Phys. Rev. Fluids 2 (12), 124103.Google Scholar
Baker, G. R. & Shelley, M. J. 1986 Boundary integral techniques for multi-connected domains. J. Comput. Phys. 64 (1), 112132.CrossRefGoogle Scholar
Barnett, A. H. 2014 Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput. 36 (2), A427A451.CrossRefGoogle Scholar
Barnett, A., Wu, B. & Veerapaneni, S. 2015 Spectrally-accurate quadratures for evaluation of layer potentials close to the boundary for the 2D Stokes and Laplace equations. SIAM J. Sci. Comput. 37 (4), B519B542.CrossRefGoogle Scholar
Beale, J. T. & Lai, M.-C. 2001 A method for computing nearly singular integrals. SIAM J. Numer. Anal. 38 (6), 19021925.CrossRefGoogle Scholar
Beale, J. T., Ying, W. & Wilson, J. R. 2016 A simple method for computing singular or nearly singular integrals on closed surfaces. Commun. Comput. Phys. 20 (3), 733753.CrossRefGoogle Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Dover.Google Scholar
Beckermann, C. & Viskanta, R. 1988 Natural convection solid/liquid phase change in porous media. Intl J. Heat Mass Transfer 31 (1), 3546.CrossRefGoogle Scholar
Bellin, A., Salandin, P. & Rinaldo, A. 1992 Simulation of dispersion in heterogeneous porous formations: statistics, first-order theories, convergence of computations. Water Resour. Res. 28 (9), 22112227.CrossRefGoogle Scholar
Berhanu, M., Petroff, A., Devauchelle, O., Kudrolli, A. & Rothman, D. H. 2012 Shape and dynamics of seepage erosion in a horizontal granular bed. Phys. Rev. E 86 (4), 041304.Google Scholar
Berkowitz, B. & Scher, H. 2001 The role of probabilistic approaches to transport theory in heterogeneous media. Transp. Porous Med. 42, 241263.Google Scholar
Berkowitz, B., Scher, H. & Silliman, S. E. 2000 Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36 (1), 149158.CrossRefGoogle Scholar
Bijeljic, B. & Blunt, M. J. 2006 Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42 (1), W01202.Google Scholar
Borgne, T. L., Dentz, M., Davy, P., Bolster, D., Carrera, J., de Dreuzy, J.-R. & Bour, O. 2011 Persistence of incomplete mixing: a key to anomalous transport. Phys. Rev. E 84, 015301.Google ScholarPubMed
Borgne, T. L., de Dreuzy, J.-R., Davy, P. & Bour, O. 2007 Characterization of the velocity field organization in heterogeneous media by conditional correlation. Water Resour. Res. 43, W02419.Google Scholar
Bryant, S. L., King, P. R. & Mellor, D. W. 1993a Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Med. 11 (1), 5370.Google Scholar
Bryant, S. L., Mellor, D. W. & Cade, C. A. 1993b Physically representative network models of transport in porous media. AIChE J. 39 (3), 387396.CrossRefGoogle Scholar
Carman, P. C. 1937 Fluid flow through granular beds. Trans. Inst. Chem. Engrs 15, 150166.Google Scholar
Carvalho, C., Khatri, S. & Kim, A. D. 2018 Asymptotic analysis for close evaluation of layer potentials. J. Comput. Phys. 355, 327341.CrossRefGoogle Scholar
Chaoui, M. & Feuillebois, F. 2003 Creeping flow around a sphere in a shear flow close to a wall. Q. J. Mech. Appl. Maths 56 (3), 381410.CrossRefGoogle Scholar
Cho, H. J., Lu, N. B., Howard, M. P., Adams, R. A. & Datta, S. S. 2019 Crack formation and self-closing in shrinkable, granular packings. Soft Matt. 15 (23), 46894702CrossRefGoogle ScholarPubMed
Chwang, A. T. & Wu, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67 (4), 787815.CrossRefGoogle Scholar
Cushman, J. H., Hu, B. X. & Deng, F.-W. 1995 Nonlocal reactive transport with physical and chemical heterogeneity: localization errors. Water Resour. Res. 31 (9), 22192237.CrossRefGoogle Scholar
Cvetkovic, V., Cheng, H. & Wen, X.-H. 1996 Analysis of nonlinear effects on tracer migration in heterogeneous aquifers using Lagrangian travel time statistics. Water Resour. Res. 32 (6), 16711680.CrossRefGoogle Scholar
Dagan, G. 1987 Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19, 183215.CrossRefGoogle Scholar
Dardis, O. & McCloskey, J. 1998 Permeability porosity relationships from numerical simulations of fluid flow. Geophys. Res. Lett. 25 (9), 14711474.CrossRefGoogle Scholar
Dentz, M., Borgne, T. L., Englert, A. & Bijeljic, B. 2011 Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 117.CrossRefGoogle ScholarPubMed
Dentz, M., Cortis, A., Scher, H. & Berkowitz, B. 2004 Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27, 155173.CrossRefGoogle Scholar
Dentz, M., Icardi, M. & Hidalgo, J. J. 2018 Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851882.CrossRefGoogle Scholar
Duda, A., Koza, Z. & Matyka, M. 2011 Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84, 036319.Google ScholarPubMed
Favier, B., Purseed, J. & Duchemin, L. 2019 Rayleigh–Bénard convection with a melting boundary. J. Fluid Mech. 858, 437473.CrossRefGoogle Scholar
Fryklund, F., Kropinski, M. C. A. & Tornberg, A.-K.2019 An integral equation based numerical method for the forced heat equation on complex domains. arXiv:1907.08537.Google Scholar
Gray, L. J., Jakowski, J., Moore, M. N. J. & Ye, W. 2019 Boundary integral analysis for non-homogeneous, incompressible Stokes flows. Adv. Comput. Maths 45 (3), 17291734.CrossRefGoogle Scholar
Greengard, L. & Rokhlin, V. 1987 A fast algorithm for particle simulations. J. Comput. Phys. 73, 325348.CrossRefGoogle Scholar
Hakoun, V., Comolli, A. & Dentz, M. 2019 Upscaling and prediction of Lagrangian velocity dynamics in heterogeneous porous media. Water Resour. Res. 55 (5), 39763996.CrossRefGoogle Scholar
Helsing, J. & Ojala, R. 2008 On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227, 28992921.CrossRefGoogle Scholar
Hewett, J. N. & Sellier, M. 2017 Evolution of an eroding cylinder in single and lattice arrangements. J. Fluids Struct. 70, 295313.CrossRefGoogle Scholar
Hewett, J. N. & Sellier, M. 2018 Modelling ripple morphodynamics driven by colloidal deposition. Comput. Fluids 163, 5467.CrossRefGoogle Scholar
Higdon, J. J. L. 1985 Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195226.CrossRefGoogle Scholar
Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 1994 Removing the stiffness for interfacial flows with surface tension. J. Comput. Phys. 114, 312338.CrossRefGoogle Scholar
Huang, J. M., Moore, M. N. J. & Ristroph, L. 2015 Shape dynamics and scaling laws for a body dissolving in fluid flow. J. Fluid Mech. 765, R3.CrossRefGoogle Scholar
Ioakimidis, N. I., Papadakis, K. E. & Perdios, E. A. 1991 Numerical evaluations of analytic functions by Cauchy’s theorem. BIT Numer. Maths 31 (2), 276285.CrossRefGoogle Scholar
Ioannidis, M. A. & Chatzis, I. 1993 Network modelling of pore structure and transport properties of porous media. Chem. Engng Sci. 48 (5), 951972.CrossRefGoogle Scholar
Jambon-Puillet, E., Shahidzadeh, N. & Bonn, D. 2018 Singular sublimation of ice and snow crystals. Nat. Commun. 9 (1), 4191.CrossRefGoogle ScholarPubMed
Johnson, P. R. & Elimelech, M. 1995 Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11, 801812.CrossRefGoogle Scholar
Kang, P. K., de Anna, P., Nunes, J. P., Bijelic, B., Blunt, M. J. & Juanes, R. 2014 Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41, 61846190.CrossRefGoogle Scholar
Kang, Q., Zhang, D., Chen, S. & He, X. 2002 Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 65, 036318.Google ScholarPubMed
Klages, R., Radons, G. & Sokolov, I. M. 2008 Anomalous Transport: Foundations and Applications. Wiley.CrossRefGoogle Scholar
af Klinteberg, L., Askham, T. & Kropinski, M. C. 2020 A fast integral equation method for the two-dimensional Navier–Stokes equations. J. Comput. Phys. 409, 109353.CrossRefGoogle Scholar
af Klinteberg, L. & Tornberg, A.-K. 2017 Error estimation for quadrature by expansion in layer potential evaluation. Adv. Comput. Maths 43, 195234.CrossRefGoogle Scholar
af Klinteberg, L. & Tornberg, A.-K. 2018 Adaptive quadrature by expansion for layer potential evaluation in two dimensions. SIAM J. Sci. Comput. 40 (3), A12251249.CrossRefGoogle Scholar
Klöckner, A., Barnett, A., Greengard, L. & O’Neil, M. 2013 Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332349.CrossRefGoogle Scholar
Knudby, C. & Carrera, J. 2005 On the relationship between indicators of geostatistical, flow and transport connectivity. Adv. Water Resour. 28, 405421.CrossRefGoogle Scholar
Koch, D. L. & Brady, J. F. 1988 Anomalous diffusion in heterogeneous porous media. Phys. Fluids 31 (5), 965973.CrossRefGoogle Scholar
Konikow, L. F. & Bredehoeft, J. D. 1978 Computer Model of Two-dimensional Solute Transport and Dispersion in Ground Water, vol. 7. US Government Printing Office.Google Scholar
Koponen, A., Kataja, M. & Timonen, J. 1996 Tortuos flow in porous media. Phys. Rev. E 54 (1), 406410.Google Scholar
Kutsovsky, Y. E., Scriven, L. E. & Davis, H. T. 1996 NMR imaging of velocity profiles and velocity distributions in bead packs. Phys. Fluids 8 (4), 863871.CrossRefGoogle Scholar
Lachaussée, F., Bertho, Y., Morize, C., Sauret, A. & Gondret, P. 2018 Competitive dynamics of two erosion patterns around a cylinder. Phys. Rev. Fluids 3 (1), 012302.CrossRefGoogle Scholar
Lee, S. H. & Leal, L. G. 1982 The motion of a sphere in the presence of a deformable interface: Ii. A numerical study of the translation of a sphere normal to an interface. J. Colloid Interface Sci. 87 (1), 81106.CrossRefGoogle Scholar
López, A., Stickland, M. T. & Dempster, W. M. 2018 CFD study of fluid flow changes with erosion. Comput. Phys. Commun. 227, 2741.CrossRefGoogle Scholar
Matyka, M., Khalili, A. & Koza, Z. 2008 Tortuosity-porosity relation in porous media flow. Phys. Rev. E 78 (2), 026306.Google ScholarPubMed
Miller, C. T., Christakos, G., Imhoff, P. T., McBride, J. F. & Pedit, J. A. 1998 Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches. Adv. Water Resour. 31 (2), 77120.CrossRefGoogle Scholar
Mitchell, W. H. & Spagnolie, S. E. 2017 A generalized traction integral equation for Stokes flow, with applications to near-wall particle mobility and viscous erosion. J. Comput. Phys. 333, 462482.CrossRefGoogle Scholar
Moore, M. N. J. 2017 Riemann–Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows. Commun. Pure Appl. Maths 70 (9), 18101831.CrossRefGoogle Scholar
Moore, M. N. J., Ristroph, L., Childress, S., Zhang, J. & Shelley, M. J. 2013 Self-similar evolution of a body eroding in a fluid flow. Phys. Fluids 25 (11), 116602.CrossRefGoogle Scholar
Morrow, L. C., King, J. R., Moroney, T. J. & McCue, S. W. 2019 Moving boundary problems for quasi-steady conduction limited melting. SIAM J. Appl. Maths 79 (5), 21072131.CrossRefGoogle Scholar
Nilsen, T. & Storesletten, L. 1990 An analytical study on natural convection in isotropic and anisotropic porous channels. Trans. ASME J. Heat Transfer 112 (2), 396401.CrossRefGoogle Scholar
Parker, G. & Izumi, N. 2000 Purely erosional cyclic and solitary steps created by flow over a cohesive bed. J. Fluid Mech. 419, 203238.CrossRefGoogle Scholar
Power, H. & Miranda, G. 1987 Second kind integral equation formulation of Stokes’ flows past a particle of arbitrary shape. SIAM J. Appl. Maths 47 (4), 689698.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Puyguiraud, A., Gouze, P. & Dentz, M. 2019 Stochastic dynamics of Lagrangian pore-scale velocities in three-dimensional porous media. Water Resour. Res. 55 (2), 11961217.CrossRefGoogle Scholar
Quaife, B. & Moore, M. N. J. 2018 A boundary-integral framework to simulate viscous erosion of a porous medium. J. Comput. Phys. 375, 121.CrossRefGoogle Scholar
Rees, D. A. S. & Storesletten, L. 1995 The effect of anisotropic permeability on free convective boundary layer flow in porous media. Transp. Porous Med. 19, 7992.Google Scholar
Ristroph, L., Moore, M. N. J., Childress, S., Shelley, M. J. & Zhang, J. 2012 Sculpting of an erodible body in flowing water. Proc. Natl Acad. Sci. USA 109 (48), 1960619609.CrossRefGoogle ScholarPubMed
Rycroft, C. H. & Bazant, M. Z. 2016 Asymmetric collapse by dissolution or melting in a uniform flow. Proc. R. Soc. Lond. A 472, 20150531.CrossRefGoogle ScholarPubMed
Saffman, P. G. 1959 A theory of dispersion in a porous medium. J. Fluid Mech. 6 (3), 321349.CrossRefGoogle Scholar
Siena, M., Ilievand, O., Prill, T., Riva, M. & Guadagnini, A. 2019 Identification of channeling in pore-scale flows. Geophys. Res. Lett. 46 (6), 32703278.CrossRefGoogle Scholar
Tang, Y., Valocchi, A. J. & Werth, C. J. 2015 A hybrid pore-scale and continuum-scale model for solute diffusion, reaction, and biofilm development in porous media. Water Resour. Res. 51, 18461859.CrossRefGoogle Scholar
Trefethen, L. N. & Weideman, J. A. C. 2014 The exponentially convergent trapezoidal rule. SIAM Rev. 56 (3), 385458.Google Scholar
Wan, C. F. & Fell, R. 2004 Investigation of rate of erosion of soils in embankment dams. J. Geotech. Geoenviron. Engng 130 (4), 373380.CrossRefGoogle Scholar
Western, A. W., Blöschl, G. & Grayson, R. B. 2001 Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour. Res. 37 (1), 8397.CrossRefGoogle Scholar
Wykes, M. S. D., Huang, J. M., Ristroph, L. & Hajjar, G. A. 2018 Self-sculpting of a dissolvable body due to gravitational convection. Phys. Rev. Fluids 3 (4), 043801.Google Scholar