Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T18:05:53.812Z Has data issue: false hasContentIssue false

POPLMark reloaded: Mechanizing proofs by logical relations

Published online by Cambridge University Press:  10 December 2019

ANDREAS ABEL
Affiliation:
Department of Computer Science and Engineering, Gothenburg University, Gothenburg, Sweden (e-mail: andreas.abel@gu.se)
GUILLAUME ALLAIS
Affiliation:
iCIS, Radboud University, Nijmegen, Netherlands (e-mail: gallais@cs.ru.nl)
ALIYA HAMEER
Affiliation:
School of Computer Science, McGill University, Montreal, Canada (e-mails: aliya.hameer@mail.mcgill.ca, bpientka@cs.mcgill.ca)
BRIGITTE PIENTKA
Affiliation:
School of Computer Science, McGill University, Montreal, Canada (e-mails: aliya.hameer@mail.mcgill.ca, bpientka@cs.mcgill.ca)
ALBERTO MOMIGLIANO*
Affiliation:
Department of Computer Science, Università degli Studi di Milano, Milan, Italy (e-mail: momigliano@di.unimi.it)
STEVEN SCHÄFER
Affiliation:
Saarland Informatics Campus, Saarland University, Saarland, Germany (e-mails: schaefer@ps.uni-saarland.de, kstark@ps.uni-saarland.de)
KATHRIN STARK
Affiliation:
Saarland Informatics Campus, Saarland University, Saarland, Germany (e-mails: schaefer@ps.uni-saarland.de, kstark@ps.uni-saarland.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a new collection of benchmark problems in mechanizing the metatheory of programming languages, in order to compare and push the state of the art of proof assistants. In particular, we focus on proofs using logical relations (LRs) and propose establishing strong normalization of a simply typed calculus with a proof by Kripke-style LRs as a benchmark. We give a modern view of this well-understood problem by formulating our LR on well-typed terms. Using this case study, we share some of the lessons learned tackling this problem in different dependently typed proof environments. In particular, we consider the mechanization in Beluga, a proof environment that supports higher-order abstract syntax encodings and contrast it to the development and strategies used in general-purpose proof assistants such as Coq and Agda. The goal of this paper is to engage the community in discussions on what support in proof environments is needed to truly bring mechanized metatheory to the masses and engage said community in the crafting of future benchmarks.

Type
Research Article
Copyright
© Cambridge University Press 2019 

References

Abadi, M., Cardelli, L., Curien, P.-L. & Lévy, J.-J. (1991) Explicit substitutions. J. Funct. Program. 1(4), 375416.CrossRefGoogle Scholar
Abbott, M., Altenkirch, T., McBride, C. & Ghani, N. (2005) ∂ for data: Differentiating data structures. Fundamenta Informaticae 65(1–2), 128.Google Scholar
Abel, A. (2008) Normalization for the simply-typed lambda-calculus in Twelf. In Logical Frameworks and Metalanguages (LFM’04), Schürmann, C. (ed). Electronic Notes in Theoretical Computer Science, vol. 199. Elsevier, pp. 316.Google Scholar
Abel, A. (2010) MiniAgda: Integrating sized and dependent types. In Proceedings Workshop on Partiality and Recursion in Interactive Theorem Provers, PAR 2010, Edinburgh, UK, 15th July 2010, Bove, A., Komendantskaya, E. & Niqui, M. (eds). EPTCS, vol. 43, pp. 1428.CrossRefGoogle Scholar
Abel, A. & Chapman, J. (2014) Normalization by evaluation in the delay monad: A case study for coinduction via copatterns and sized types. In MSFP. EPTCS, vol. 153, pp. 5167.Google Scholar
Abel, A., Öhman, J. & Vezzosi, A. (2018) Decidability of conversion for type theory in type theory. Proc. ACM Program. Lang. 2(POPL), 23:123:29.Google Scholar
Abel, A., Pientka, B., Thibodeau, D. & Setzer, A. (2013) Copatterns: Programming infinite structures by observations. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’13, Rome, Italy, January 23–25, 2013, Giacobazzi, R. & Cousot, R. (eds). ACM, pp. 2738.CrossRefGoogle Scholar
Abel, A. & Scherer, G. (2012) On irrelevance and algorithmic equality in predicative type theory. Logical Methods Comput. Sci. 8(1:29), 136. TYPES’10 special issue.CrossRefGoogle Scholar
Abel, A. & Vezzosi, A. (2014) A formalized proof of strong normalization for guarded recursive types. In Programming Languages and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17–19, 2014, Proceedings, Garrigue, J. (ed). Lecture Notes in Computer Science, vol. 8858. Springer, pp. 140158.CrossRefGoogle Scholar
Adams, R. (2006) Formalized metatheory with terms represented by an indexed family of types. In Types for Proofs and Programs, Filliâtre, J.-C., Paulin-Mohring, C. & Werner, B. (eds). Berlin, Heidelberg: Springer, pp. 116.Google Scholar
Ahmed, A. (2004) Semantics of Types for Mutable State. Ph.D. thesis, Princeton University.Google Scholar
Ahmed, A. (2013) Logical relations. In Oregon Programming Languages Summer School (OPLSS).Google Scholar
Ahmed, A., Fluet, M. & Morrisett, G. (2007) L3: A linear language with locations. Fundam. Inform. 77(4), 397449.Google Scholar
Allais, G., Atkey, R., Chapman, J., McBride, C. & McKinna, J. (2018). A type and scope safe universe of syntaxes with binding: Their semantics and proofs. Proc. ACM Program. Lang. 2(ICFP), 90:1–90:30.Google Scholar
Allais, G., Chapman, J., McBride, C. & McKinna, J. (2017) Type-and-scope safe programs and their proofs. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs. CPP 2017. New York, NY, USA: ACM, pp. 195207.Google Scholar
Altenkirch, T. (1992) Brewing Strong Normalization Proof with LEGO. Technical report 92-230. LFCS, Edinburgh. http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-230/ECS-LFCS-92-230.pdf.Google Scholar
Altenkirch, T. (1993) A formalization of the strong normalization proof for System F in LEGO. In Typed Lambda Calculi and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA’93, Utrecht, The Netherlands, March 16–18, 1993, Proceedings, Bezem, M. & Groote, J. F. (eds). Lecture Notes in Computer Science, vol. 664. Springer, pp. 1328.CrossRefGoogle Scholar
Altenkirch, T., Chapman, J. & Uustalu, T. (2014) Relative monads formalised. J. Formalized Reasoning 7(1), 143.Google Scholar
Altenkirch, T., Chapman, J. & Uustalu, T. (2015) Monads need not be endofunctors. Log. Methods Comput. Sci. 11(1).Google Scholar
Altenkirch, T., Hofmann, M. & Streicher, T. (1995) Categorical reconstruction of a reduction free normalization proof. In Category Theory and Computer Science, 6th International Conference, CTCS’95, Cambridge, UK, August 7–11, 1995, Proceedings, Pitt, D. H., Rydeheard, D. E. & Johnstone, P. (eds). Lecture Notes in Computer Science, vol. 953. Springer, pp. 182199.CrossRefGoogle Scholar
Altenkirch, T. & Kaposi, A. (2016) Type theory in type theory using quotient inductive types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22, 2016, Bodík, R. & Majumdar, R. (eds). ACM, pp. 1829.CrossRefGoogle Scholar
Altenkirch, T. & Kaposi, A. (2017) Normalisation by evaluation for type theory, in type theory. Logical Methods Comput. Sci. 13(4:1), 126.Google Scholar
Altenkirch, T. & McBride, C. (2003) Generic programming within dependently typed programming. In Proceedings of the IFIP TC2/WG2.1 Working Conference on Generic Programming. Deventer, The Netherlands, The Netherlands: Kluwer, B.V., pp. 120.CrossRefGoogle Scholar
Anand, A. (2016) Exploiting uniformity in substitution: The Nuprl term model. In The 5th International Congress on Mathematical Software (ICMS 2016).Google Scholar
Aydemir, B., Bohannon, A., Fairbairn, M., Foster, J., Pierce, B., Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S. & Zdancewic, S. (2005) Mechanized metatheory for the masses: The POPLmark challenge. In Eighteenth International Conference on Theorem Proving in Higher Order Logics (TPHOLs), Hurd, J. & Melham, T. F. (eds). Lecture Notes in Computer Science, vol. 3603. Springer, pp. 5065.CrossRefGoogle Scholar
Aydemir, B. & Weirich, S. (2010) LNgen: Tool Support for Locally Nameless Representations. Technical report. MS-CIS-10-24. University of Pennsylvania.Google Scholar
Bengtson, J., Parrow, J. & Weber, T. (2016) Psi-calculi in isabelle. J. Autom. Reasoning 56(1), 147.CrossRefGoogle Scholar
Benke, M., Dybjer, P. & Jansson, P. (2003) Universes for generic programs and proofs in dependent type theory. Nordic J. Comput. 10(4), 265289.Google Scholar
Benton, N., Hur, C.-K., Kennedy, A. & McBride, C. (2012) Strongly typed term representations in Coq. J. Autom. Reasoning 49(2), 141159.CrossRefGoogle Scholar
Berger, U., Berghofer, S., Letouzey, P. & Schwichtenberg, H. (2006) Program extraction from normalization proofs. Studia Logica 82(1), 2549.CrossRefGoogle Scholar
Berghofer, S. (2004) Extracting a normalization algorithm in Isabelle/HOL. In TYPES. Lecture Notes in Computer Science, vol. 3839. Springer, pp. 5065.Google Scholar
Blanchette, J. C., Bouzy, A., Lochbihler, A., Popescu, A. & Traytel, D. (2017) Friends with benefits. In Proceedings of the 26th European Symposium on Programming Languages and Systems - Volume 10201. New York, NY, USA: Springer-Verlag New York, Inc, pp. 111140.Google Scholar
Cave, A. & Pientka, B. (2012) Programming with binders and indexed data-types. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22–28, 2012, Field, J. & Hicks, M. (eds). ACM, pp. 413424.CrossRefGoogle Scholar
Cave, A. & Pientka, B. (2013) First-class substitutions in contextual type theory. In 8th ACM SIGPLAN International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP’13). ACM, pp. 1524.CrossRefGoogle Scholar
Cave, A. & Pientka, B. (2015) A case study on logical relations using contextual types. In Proceedings Tenth International Workshop on Logical Frameworks and Meta Languages: Theory and Practice, LFMTP 2015, Berlin, Germany, August 1, 2015, Cervesato, I. & Chaudhuri, K. (eds). EPTCS, vol. 185.Google Scholar
Cave, A. & Pientka, B. (2018) Mechanizing proofs with logical relations – Kripke-style. Math. Struct. Comput. Sci. 28(9), 16061638.CrossRefGoogle Scholar
Cervesato, I. & Pfenning, F. (2002) A linear logical framework. Inf. Comput. 179(1), 1975. cited By 52.CrossRefGoogle Scholar
Chapman, J. (2009) Type theory should eat itself. Electr. Notes Theor. Comput. Sci. 228, 2136. Proceedings of the International Workshop on Logical Frameworks and Metalanguages: Theory and Practice (LFMTP 2008).Google Scholar
Chapman, J., Dagand, P., McBride, C. & Morris, P. (2010) The gentle art of levitation. Sigplan Not. 45(9), 314.CrossRefGoogle Scholar
Charguéraud, A. (2012) The locally nameless representation. J. Autom. Reasoning 49(3), 363408.CrossRefGoogle Scholar
Cheney, J. (2005) Toward a general theory of names: Binding and scope. In ACM SIGPLAN International Conference on Functional Programming, Workshop on Mechanized Reasoning about Languages with Variable Binding, MERLIN 2005, Tallinn, Estonia, September 30, 2005, Momigliano, A. & Pollack, R. (eds). ACM, pp. 3340.CrossRefGoogle Scholar
Cheney, J. & Momigliano, A. (2017) α check: A mechanized metatheory model checker. TPLP 17(3), 311352.Google Scholar
Chlipala, A. (2008) Parametric higher-order abstract syntax for mechanized semantics. In ACM Sigplan Notices, vol. 43. ACM, pp. 143156.Google Scholar
Coquand, C. (1993) From semantics to rules: A machine assisted analysis. In Computer Science Logic, 7th Workshop, CSL’93, Swansea, United Kingdom, September 13–17, 1993, Papers, Selected, Börger, E., Gurevich, Y. & Meinke, K. (eds), Lecture Notes in Computer Science, vol. 832. Springer, pp. 91105.Google Scholar
Crary, K. (2005) Logical relations and a case study in equivalence checking. In Advanced Topics in Types and Programming Languages, Pierce, B. C. (ed). MIT.Google Scholar
Curien, P.-L., Hardin, T. & Roís, A. (1992) Strong normalization of substitutions. In Mathematical Foundations of Computer Science 1992, 17th International Symposium, MFCS’92, Prague, Czechoslovakia, August 24–28, 1992, Proceedings, Havel, I. M., & Koubek, V. (eds). Lecture Notes in Computer Science, vol. 629. Springer, pp. 209217.CrossRefGoogle Scholar
Danielsson, N. A. (2007) A formalisation of a dependently typed language as an inductive-recursive family. In Types for Proofs and Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18–21, 2006, Revised Selected Papers, Altenkirch, T. & McBride, C. (eds). Lecture Notes in Computer Science, vol. 4502. Springer, pp. 93109.CrossRefGoogle Scholar
De Bruijn, N. G. (1972) Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. In Indagationes Mathematicae (Proceedings), vol. 75. Elsevier, pp. 381392.CrossRefGoogle Scholar
Despeyroux, J., Felty, A. P. & Hirschowitz, A. (1995) Higher-order abstract syntax in coq. In Typed Lambda Calculi and Applications, Second International Conference on Typed Lambda Calculi and Applications, TLCA’95, Edinburgh, UK, April 10–12, 1995, Proceedings, Dezani-Ciancaglini, M. & Plotkin, G. D. (eds). Lecture Notes in Computer Science, vol. 902. Springer, pp. 124138.CrossRefGoogle Scholar
Dybjer, P. (1994) Inductive families. Formal Aspects Comput 6(4), 440465.CrossRefGoogle Scholar
Dybjer, P. & Setzer, A. (1999) A finite axiomatization of inductive-recursive definitions. In Typed Lambda Calculi and Applications, 4th International Conference, TLCA’99, L’Aquila, Italy, April 7–9, 1999, Proceedings, Girard, J.-Y. (ed). Lecture Notes in Computer Science, vol. 1581. Springer, pp. 129146.Google Scholar
Felty, A. & Momigliano, A. (2012) Hybrid: A definitional two-level approach to reasoning with higher-order abstract syntax. J. Autom. Reasoning 48(1), 43105.Google Scholar
Felty, A. P. & Momigliano, A. (2009) Reasoning with hypothetical judgments and open terms in Hybrid. In 11th ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP’09). New York, NY, USA: ACM, pp. 8392.Google Scholar
Felty, A. P., Momigliano, A. & Pientka, B. (2015) The next 700 challenge problems for reasoning with higher-order abstract syntax representations - part 2 - A survey. J. Autom. Reasoning 55(4), 307372.CrossRefGoogle Scholar
Felty, A. P., Momigliano, A. & Pientka, B. (2018) Benchmarks for reasoning with syntax trees containing binders and contexts of assumptions. Math. Struct. Comput. Sci. 28(9), 15071540.CrossRefGoogle Scholar
Ferreira, F., Monnier, S. & Pientka, B. (2013) Compiling contextual objects: Bringing higher-order abstract syntax to programmers. In Proceedings of the 7th workshop on Programming languages meets program verification. ACM, pp. 1324.CrossRefGoogle Scholar
Friedman, H. (1975) Equality between functionals. In Logic Colloquium, Parikh, R. (ed). Lecture Notes in Mathematics, vol. 453. Springer, pp. 2237.CrossRefGoogle Scholar
Gacek, A. (2010) Girard’s Proof of Strong Normalization of the Simply-Typed Lambda-Calculus Calculus. http://abella-prover.org/examples/lambda-calculus/normalization/stlc-strong-norm.html.Google Scholar
Geuvers, H. (1995) A short and flexible proof of strong normalization for the calculus of constructions. In Selected Papers from the International Workshop on Types for Proofs and Programs. TYPES’94. London, UK: Springer-Verlag, pp. 1438.CrossRefGoogle Scholar
Girard, J. Y. (1972) Interprétation fonctionnelle et elimination des coupures de l’arithmétique d’ordre supérieur. These d’état, Université de Paris 7.Google Scholar
Girard, J.-Y., Lafont, Y. & Taylor, P. (1989) Proofs and Types. Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University.Google Scholar
Goguen, H. (1995) Typed operational semantics. In 2nd International Conference on Typed Lambda Calculi and Applications (TLCA’95), Dezani-Ciancaglini, M. & Plotkin, G. (eds). Lecture Notes in Computer Science (LNCS 902). Springer, pp. 186200.CrossRefGoogle Scholar
Goguen, H. (2005) Justifying algorithms for βη conversion. In Foundations of Software Science and Computational Structures, 8th International Conference, FoSSaCS 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4–8, 2005, Proceedings, Sassone, V. (ed). Lecture Notes in Computer Science, vol. 3441. Springer, pp. 410424.Google Scholar
Group, Nominal Methods (2009) Strong normalization for the simply typed lambda calculus. https://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal-Examples/SN.html.Google Scholar
Harper, R., Honsell, F. & Plotkin, G. D. (1993) A framework for defining logics. J. Associat. Comput. Mach. 40(1), 143184.CrossRefGoogle Scholar
Harper, R. & Pfenning, F. (2005) On equivalence and canonical forms in the LF type theory. ACM Trans. Comput. Logic 6(1), 61101.CrossRefGoogle Scholar
Hoare, T. (2003) The verifying compiler: A grand challenge for computing research. In Modular Programming Languages, Böszörményi, L. & Schojer, P. (eds). Berlin, Heidelberg: Springer, pp. 2535.CrossRefGoogle Scholar
Hofmann, M. (1999) Semantical analysis of higher-order abstract syntax. In 14th Symposium on Logic in Computer Science, 1999. Proceedings. IEEE, pp. 204213.CrossRefGoogle Scholar
Hur, C.-K., Neis, G., Dreyer, D. & Vafeiadis, V. (2013) The power of parameterization in coinductive proof. In POPL’13. NY, USA: ACM, pp. 193206.Google Scholar
Jacob-Rao, R., Pientka, B. & Thibodeau, D. (2018) Index-stratified types. In 3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, Kirchner, H. (ed). LIPIcs, vol. 108. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 19:1–19:17.Google Scholar
Joachimski, F. & Matthes, R. (2003) Short proofs of normalization for the simply-typed lambda-calculus, permutative conversions and Gödel’s T. Arch. Math. Logic 42(1), 5987.CrossRefGoogle Scholar
Kaiser, J., Schäfer, S. & Stark, K. (2017) Autosubst 2: Towards reasoning with multi-sorted de Bruijn terms and vector substitutions. In Proceedings of the Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. LFMTP’17. New York, NY, USA: ACM, pp. 1014.CrossRefGoogle Scholar
Keuchel, S., Weirich, S. & Schrijvers, T. (2016) Needle & Knot: Binder boilerplate tied up. In European Symposium on Programming. Springer, pp. 419445.Google Scholar
Klein, G. & Nipkow, T. (2006) A machine-checked model for a Java-like language, virtual machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619695.CrossRefGoogle Scholar
Kumar, R., Myreen, M. O., Norrish, M. & Owens, S. (2014) CakeML: A verified implementation of ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’14, San Diego, CA, USA, January 20–21, 2014, Jagannathan, S. & Sewell, P. (eds). ACM, pp. 179192.Google Scholar
Lee, D. K., Crary, K. & Harper, R. (2007) Towards a mechanized metatheory of standard ML. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17–19, 2007, Hofmann, M. & Felleisen, M. (eds). ACM, pp. 173184.CrossRefGoogle Scholar
Lee, G., Oliveira, B. C. d. S., Cho, S. & Yi, K. (2012) GMeta: A generic formal metatheory framework for first-order representations. In Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April 1, 2012. Proceedings, Seidl, H. (ed). Lecture Notes in Computer Science, vol. 7211. Springer, pp. 436455.CrossRefGoogle Scholar
Lenglet, S. & Schmitt, A. (2018) Hoπ in Coq. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2018. New York, NY, USA: ACM, pp. 252265.CrossRefGoogle Scholar
Leroy, X. (2009) Formal verification of a realistic compiler. Commun. ACM 52(7), 107115.CrossRefGoogle Scholar
Licata, D. R. & Harper, R. (2009) A universe of binding and computation. In ACM Sigplan Notices, vol. 44. ACM, pp. 123134.Google Scholar
Mahmoud, M. Y. & Felty, A. P. (2019) Formalization of metatheory of the quipper quantum programming language in a linear logic. J. Autom. Reasoning 63(4), 9671002.CrossRefGoogle Scholar
Malcolm, G. (1990) Data structures and program transformation. Sci. Comput. Program. 14(2–3), 255279.CrossRefGoogle Scholar
Martin-Löf, P. (1982) Constructive mathematics and computer programming. Stud. Logic Foundat. Math. 104, 153175.CrossRefGoogle Scholar
Mitchell, J. C. & Moggi, E. (1991) Kripke-style models for typed lambda calculus. Ann. Pure Appl. Logic 51(1–2), 99124.CrossRefGoogle Scholar
Momigliano, A. (2012) A supposedly fun thing I may have to do again: A HOAS encoding of Howe’s method. In Proceedings of the Seventh International Workshop on Logical Frameworks and Meta-languages, Theory and Practice. LFMTP’12. New York, NY, USA: ACM, pp. 3342.Google Scholar
Momigliano, A., Pientka, B. & Thibodeau, D. (2019) A case study in programming coinductive proofs: Howe’s method. Math. Struct. Comput. Sci. 29(8), 13091343.CrossRefGoogle Scholar
Nanevski, A., Pfenning, F. & Pientka, B. (2008) Contextual modal type theory. ACM Trans. Comput. Logic 9(3), 149.CrossRefGoogle Scholar
Narboux, J. & Urban, C. (2008) Formalising in Nominal Isabelle Crary’s completeness proof for equivalence checking. Electronic Notes Theoret. Comput. Sci. 196, 318. Proceedings of the Second International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2007).Google Scholar
Norell, U. (2009) Dependently typed programming in Agda. In AFP Summer School. Springer, pp. 230266.Google Scholar
Pérez, J. A., Caires, L., Pfenning, F. & Toninho, B. (2014) Linear logical relations and observational equivalences for session-based concurrency. Inf. Comput. 239, 254302.Google Scholar
Pickering, M., Érdi, G., Peyton Jones, S. & Eisenberg, R. A. (2016) Pattern synonyms. In Proceedings of the 9th International Symposium on Haskell. Haskell 2016. New York, NY, USA: ACM, pp. 8091.CrossRefGoogle Scholar
Pientka, B. (2005) Verifying termination and reduction properties about higher-order logic programs. J. Autom. Reasoning 34(2), 179207.CrossRefGoogle Scholar
Pientka, B. (2007) Proof pearl: The power of higher-order encodings in the logical framework LF. In Theorem Proving in Higher Order Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10–13, 2007, Proceedings, Schneider, K. & Brandt, J. (eds). Lecture Notes in Computer Science, vol. 4732. Springer, pp. 246261.CrossRefGoogle Scholar
Pientka, B. (2008) A type-theoretic foundation for programming with higher-order abstract syntax and first-class substitutions. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7–12, 2008, Necula, G. C. & Wadler, P. (eds). ACM, pp. 371382.Google Scholar
Pientka, B. & Dunfield, J. (2010) Beluga: A framework for programming and reasoning with deductive systems (system description). In 5th International Joint Conference on Automated Reasoning (IJCAR’10), Giesl, J. & Haehnle, R. (eds). Lecture Notes in Artificial Intelligence (LNAI 6173). Springer, pp. 1521.Google Scholar
Pierce, B. C. (2002) Types and Programming Languages. MIT.Google Scholar
Pierce, B. C. & Weirich, S. (2012) Introduction to the special issue on the POPLMark Challenge. J. Autom. Reasoning 49(3), 301302.Google Scholar
Plotkin, G. (1973) Lambda-Definability and Logical Relations. Memorandum sai-rm-4. University of Edinburgh.Google Scholar
Pollack, R. (1994) Closure under alpha-conversion. In Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen, The Netherlands, May 24–28, 1993, Papers, Selected, Barendregt, H. & Nipkow, T. (eds). Lecture Notes in Computer Science, vol. 806. Springer, pp. 313332.CrossRefGoogle Scholar
Pouillard, N. & Pottier, F. (2010) A fresh look at programming with names and binders. In ACM Sigplan Notices, vol. 45. ACM, pp. 217228.CrossRefGoogle Scholar
Poulsen, C. B., Rouvoet, A., Tolmach, A., Krebbers, R. & Visser, E. (2018). Intrinsically-typed definitional interpreters for imperative languages. PACMPL 2(POPL), 16:1–16:34.Google Scholar
Rasmussen, U. & Filinski, A. (2013) Structural logical relations with case analysis and equality reasoning. In Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frameworks & Meta-languages: Theory & Practice, LFMTP 2013, Boston, Massachusetts, USA, September 23, 2013, Momigliano, A., Pientka, B. & Pollack, R. (eds). ACM, pp. 4354.CrossRefGoogle Scholar
Rizkallah, C., Garbuzov, D. & Zdancewic, S. (2018) A formal equational theory for call-by-push-value. In International Conference on Interactive Theorem Proving. Springer, pp. 523541.CrossRefGoogle Scholar
Rossberg, A., Russo, C. & Dreyer, D. (2014) F-ing modules. J. Funct. Program. 24(5), 529607.CrossRefGoogle Scholar
Schäfer, S., Tebbi, T. & Smolka, G. (2014) Autosubst: Automation for de Bruijn substitutions. In 6th Coq Workshop, July 2014.Google Scholar
Schäfer, S., Smolka, G. & Tebbi, T. (2015) Completeness and decidability of de Bruijn substitution algebra in Coq. In Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP 2015, Mumbai, India, January 15–17, 2015. Berlin, Heidelberg: Springer-Verlag, pp. 6773.CrossRefGoogle Scholar
Schürmann, C. & Sarnat, J. (2008) Structural logical relations. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, June 24–27, 2008, Pittsburgh, PA, USA, Pfenning, F. (ed). IEEE Computer Society, pp. 6980.CrossRefGoogle Scholar
Sturm, S. (2018) Verification and Theorem Proving in F*. M.Phil. thesis, LMU. https://github.com/sturmsebastian/Fstar-master-thesis-code.Google Scholar
Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. J. Symb. Logic 32(2), 198212.CrossRefGoogle Scholar
Tiu, A. & Miller, D. (2010) Proof search specifications of bisimulation and modal logics for the pi-calculus. ACM Trans. Comput. Log. 11(2), 13:113:35.CrossRefGoogle Scholar
Urban, C. & Kaliszyk, C. (2012) General bindings and alpha-equivalence in nominal isabelle. Log. Methods Comput. Sci. 8(2:14), 135.CrossRefGoogle Scholar
Urban, C., Cheney, J. & Berghofer, S. (2011) Mechanizing the metatheory of LF. ACM Trans. Comput. Logic 12(2), 15:115:42.CrossRefGoogle Scholar
van Raamsdonk, F. & Severi, P. (1995) On Normalisation. Technical report 95/20. Technische Universiteit Eindhoven.Google Scholar
Wang, Y., Chaudhuri, K., Gacek, A. & Nadathur, G. (2013) Reasoning about higher-order relational specifications. In Proceedings of the 15th Symposium on Principles and Practice of Declarative Programming. ACM, pp. 157168.CrossRefGoogle Scholar
Watkins, K., Cervesato, I., Pfenning, F. & Walker, D. (2002) A Concurrent Logical Framework I: Judgments and Properties. Technical report CMU-CS-02-101. Department of Computer Science, Carnegie Mellon University.CrossRefGoogle Scholar
Weirich, S., Yorgey, B. A. & Sheard, T. (2011) Binders unbound. In ACM SIGPLAN Notices, vol. 46. ACM, pp. 333345.Google Scholar
Werner, B. (1992) A normalization proof for an impredicative type system with large elimination over integers. In International Workshop on Types for Proofs and Programs (TYPES), pp. 341357.Google Scholar
Xi, H. (2004) Applied type system. In TYPES 2003. Lecture Notes in Computer Science, vol. 3085. Springer, pp. 394408.Google Scholar
Supplementary material: PDF

Abel et al. supplementary material

Abel et al. supplementary material 1
Download Abel et al. supplementary material(PDF)
PDF 222.9 KB

Abel et al. supplementary material

Abel et al. supplementary material 2

Download Abel et al. supplementary material(Video)
Video 134.9 MB
Submit a response

Discussions

No Discussions have been published for this article.