Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T00:04:58.920Z Has data issue: false hasContentIssue false

The fox tapeworm, Echinococcus multilocularis, in grey wolves and dogs in Slovakia: epidemiology and genetic analysis

Published online by Cambridge University Press:  06 July 2020

J. Jarošová*
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, 040 01Košice, Slovakia University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovakia
D. Antolová
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, 040 01Košice, Slovakia
V. Šnábel
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, 040 01Košice, Slovakia
N. Guimarães
Affiliation:
Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 081 16Prešov, Slovakia
J. Štofík
Affiliation:
ŠOPSR – Správa NP Poloniny, 067 61Stakčín, Slovakia
P. Urban
Affiliation:
Faculty of Natural Sciences, Matej Bel University, 974 01Banská Bystrica, Slovakia
S. Cavallero
Affiliation:
Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185Rome, Italy
M. Miterpáková
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, 040 01Košice, Slovakia
*
Author for correspondence: J. Jarošová, E-mail: jarosova@saske.sk

Abstract

Echinococcus multilocularis, the causative agent of human alveolar echinococcosis, is an important emerging parasite in the northern hemisphere. In epidemiological studies, the highest attention is being paid to foxes as the main reservoir hosts responsible for geographic expansion from multiple focal populations and the invasion of urban habitats, but little information is available on the parasite distribution in other carnivores. Hence, the study was designed to obtain updated information about the occurrence and genetic diversity of E. multilocularis in grey wolves and dogs in Slovakia. Faecal samples of wolves were collected from three locations under a certain level of environmental protection in the central and eastern parts of the country, and the presence of the parasite DNA was detected in 35.7% of 112 samples, with the highest rate (51.2%) recorded in the Poloniny National Park in north-eastern Slovakia. Among 110 faecal dog samples, E. multilocularis was detected in three faeces from segregated Roma settlements in the eastern part of the country, which accounted for an overall positivity of 2.7%. Sequence analysis of two mitochondrial genes, 12S rRNA and NADH dehydrogenase subunit 1, revealed four haplotypes in 13 isolates from wolves and dogs originating from four sites in eastern and central Slovakia, with all samples bearing a European-type pattern of E. multilocularis. The more than one-third positivity rate of E. multilocularis in wolf faecal samples dispersed over a large part of the country has corroborated the extensive circulation of the parasite in wildlife and confirmed the need to improve intervention control strategies.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antolová, D, Reiterová, K, Miterpáková, M, Dinkel, A and Dubinský, P (2008) The first finding of Echinococcus multilocularis in dogs in Slovakia: an emerging risk for spreading of infection. Zoonoses and Public Health 56, 5358.CrossRefGoogle ScholarPubMed
Antolová, D, Víchová, B, Jarošová, J, Gál, V and Bajužík, B (2018) Alveolar echinococcosis in a dog; analysis of clinical and histological findings and molecular identification of Echinococcus multilocularis. Acta Parasitologica 63, 486494.CrossRefGoogle Scholar
Bagrade, G, Kirjušina, M, Vismanis, K and Ozoliņš, J (2009) Helminth parasites of the wolf Canis lupus from Latvia. Journal of Helminthology 83, 6368.CrossRefGoogle ScholarPubMed
Beck, R, Mihaljević, Ž, Brezak, R, Bosnić, S, Janković, IL and Deplazes, P (2018) First detection of Echinococcus multilocularis in Croatia. Parasitology Research 117, 617621.CrossRefGoogle ScholarPubMed
Clement, M, Snell, Q, Walker, P, Posada, D and Crandall, K (2002) TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium. International Proceedings 2, 184.Google Scholar
Conraths, FJ, Probst, C, Possenti, A, Boufana, B, Saulle, R, La Torre, G, Busani, L and Casulli, A (2017) Potential risk factors associated with human alveolar echinococcosis: systematic review and meta-analysis. PLOS Neglected Tropical Diseases 11, e0005801.CrossRefGoogle ScholarPubMed
Davidson, RK, Romig, T, Jenkins, E, Tryland, M and Robertson, LJ (2012) The impact of globalisation on the distribution of Echinococcus multilocularis. Trends in Parasitology 28, 239247.CrossRefGoogle ScholarPubMed
Davidson, RK, Lavikainen, A, Konyaev, S, Schurer, J, Miller, AL, Oksanen, A, Skírnisson, K and Jenkins, E (2016) Echinococcus across the north: current knowledge, future challenges. Food and Waterborne Parasitology 4, 3953.CrossRefGoogle Scholar
Dinkel, A, von Nickisch-Rosenegk, M, Bilger, B, Merli, M, Lucius, R and Romig, T (1998) Detection of Echinococcus multilocularis in the definitive host: coprodiagnosis by PCR as an alternative to necropsy. Journal of Clinical Microbiology 36, 18711876.CrossRefGoogle ScholarPubMed
Dubinský, P, Svobodová, V, Turčeková, L, Literák, I, Martínek, K, Reiterová, K, Kolářová, L, Klimeš, J and Mrlík, V (1999) Echinococcus multilocularis in Slovak Republic: the first record in red foxes (Vulpes vulpes). Helminthologia 36, 105110.Google Scholar
Dyachenko, V, Beck, E, Pantchev, N and Bauer, C (2008) Cost-effective method of DNA extraction from taeniid eggs. Parasitology Research 102, 811813.CrossRefGoogle ScholarPubMed
Eckert, J and Deplazes, P (2004) Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clinical Microbiology Reviews 17, 107135.CrossRefGoogle ScholarPubMed
Finďo, S (2002) Potravná ekológia vlka (Canis lupus) v slovenských Karpatoch. [Food ecology of wolf (Canis lupus) in the Slovak Carpathians]. Research and Protection of Mammals in Slovakia 5, 4355 (in Slovak).Google Scholar
Finďo, S and Chovancová, B (2004) Home ranges of two wolves packs in the Slovak Carpathians. Folia Zoologica 53, 1726.Google Scholar
Finďo, S and Skuban, M (2011) Ako chrániť hospodárske zvieratá proti veľkým šelmám [How to protect livestock against large carnivores]. Zvolen, Slovak, Carpathian Wildlife Society, pp. 100.Google Scholar
Finďo, S and Skuban, M (2019) Ochrana šeliem v minulosti a súčasnosti [Protection of carnivores in the past and present]. Enviromagazín 24, 3031 (in Slovak).Google Scholar
Gesy, KM, Schurer, JM, Massolo, A, Liccioli, S, Elkin, BT, Alisauskas, R and Jenkins, EJ (2014) Unexpected diversity of the cestode Echinococcus multilocularis in wildlife in Canada. International Journal for Parasitology: Parasites and Wildlife 3, 8187.Google ScholarPubMed
Hegglin, D and Deplazes, P (2013) Control of Echinococcus multilocularis: strategies, feasibility and cost-benefit analyses. International Journal for Parasitology 43, 327337.CrossRefGoogle ScholarPubMed
Hegglin, D, Bontadina, F and Deplazes, P (2015) Human-wildlife interactions and zoonotic transmission of Echinococcus multilocularis. Trends in Parasitology 5, 167173.CrossRefGoogle Scholar
Hindrikson, M, Remm, J, Pilot, M, et al. (2017) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biological Reviews of the Cambridge Philosophical Society 92, 16011629.CrossRefGoogle ScholarPubMed
Karamon, J, Stojecki, K, Samorek-Pierog, M, Bilska-Zajac, E, Rozycki, M, Chmurzynska, E, Sroka, J, Zdybel, J and Cencek, T (2017) Genetic diversity of Echinococcus multilocularis in red foxes in Poland: the first report of a haplotype of probable Asian origin. Folia Parasitologica 64, 007.CrossRefGoogle ScholarPubMed
Kern, P, Menezes da Siva, A, Akhan, O, Müllhaupt, B, Vizcaychipi, KA, Budke, C and Vuitton, DA (2017) The echinococcoses: diagnosis, clinical management and burden of disease. Advances in Parasitology 96, 259369.CrossRefGoogle ScholarPubMed
Knapp, J, Bart, JM, Giraudoux, P, et al. (2009) Genetic diversity of the cestode Echinococcus multilocularis in red foxes at a continental scale in Europe. PLOS Neglected Tropical Deseases 3, e452.CrossRefGoogle Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.CrossRefGoogle ScholarPubMed
Lass, A, Szostakowska, B, Kontogeorgos, I, Korzeniewski, K, Karamon, J, Sulima, M and Karanis, P (2019) First detection of Echinococcus multilocularis in environmental water sources in endemic areas using capsule filtration and molecular detection methods. Water Research 160, 466474.CrossRefGoogle ScholarPubMed
Li, JQ, Li, L, Fan, YL, Fu, BQ, Zhu, XQ, Yan, HB and Jia, WZ (2018) Genetic diversity in Echinococcus multilocularis from the plateau vole and plateau pika in Jiuzhi County, Qinghai Province, China. Frontiers in Microbiology 9, 2632.CrossRefGoogle ScholarPubMed
Martínek, K, Kolárová, L, Hapl, E, Literák, I and Uhrin, M (2001) Echinococcus multilocularis in European wolves (Canis lupus). Parasitology Research 87, 838839.Google Scholar
Massolo, A, Valli, D, Wasermann, M, et al. (2018) Unexpected Echinococcus multilocularis infections in shepherd dogs and wolves in south-western Italian Alps: a new endemic area? International Journal for Parasitology: Parasites and Wildlife 7, 309316.Google ScholarPubMed
Miller, AL, Olsson, GE, Sollenberg, S, Skarin, M, Wahlström, H and Höglund, J (2016) Support for targeted sampling of red fox (Vulpes vulpes) feces in Sweden: a method to improve the probability of finding Echinococcus multilocularis. Parasites & Vectors 9, 613.CrossRefGoogle ScholarPubMed
Miterpáková, M and Dubinský, P (2011) Fox tapeworm (Echinococcus multilocularis) in Slovakia – summarizing the long-term monitoring. Helminthologia 48, 155161.CrossRefGoogle Scholar
Nakao, M, Xiao, N, Okamoto, M, Yanagida, T, Sako, Y and Ito, A (2009) Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasitology International 58, 384389.CrossRefGoogle ScholarPubMed
National Forest Center of the Slovak Republic (NFCSR) (2019) Poľovnícka štatistická ročenka Slovenskej republiky 2018 [Hunting Statistics Yearbook 2018]. Zvolen, Slovak, Národné lesnícke centrum, pp. 246.Google Scholar
Oksanen, A, Siles-Lucas, M, Karamon, J, et al. (2016) The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: a systematic review and meta-analysis. Parasites & Vectors 9, 519.CrossRefGoogle ScholarPubMed
Pipíková, J, Papajová, I, Šoltys, J, Schusterová, I, Kočišová, D and Toháthyová, A (2017) Segregated settlements present an increased risk for the parasite infection spread in northeastern Slovakia. Helminthologia 54, 199210.CrossRefGoogle Scholar
Romig, T, Deplazes, P, Jenkins, D, Giraudoux, P, Massolo, A, Craig, PS, Wassermann, M, Takahashi, K and de La Rue, M (2017) Ecology and life cycle patterns of Echinococcus Species. Advances in Parasitology 95, 213314.CrossRefGoogle ScholarPubMed
Schneider, R, Gollackner, B, Edel, B, Schmid, K, Wrba, F, Tucek, G, Walochnik, J and Auer, H (2008) Development of a new PCR protocol for the detection of species and genotypes (strains) of Echinococcus in formalin-fixed, paraffin-embedded tissues. International Journal for Parasitology 38, 10651071.CrossRefGoogle ScholarPubMed
Sievers, F, Wilm, A, Dineen, DG, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539.CrossRefGoogle ScholarPubMed
Šnábel, V, Miterpáková, M, D'Amelio, S, Busi, M, Bartková, D, Turčeková, L, Maddox-Hyttel, C, Skuce, P and Dubinský, P (2006) Genetic structuring and differention of Echinococcus multilocularis in Slovakia assessed by sequencing and isoenzyme studies. Helminthologia 43, 196202.CrossRefGoogle Scholar
Šnábel, V, Sréter, T, Gottstein, B, Gawor, J, Romig, T and Miterpáková, M (2019) Genetic diversity of Echinococcus multilocularis cestodes in Europe as determined by mitochondrial and nuclear sequences. pp. 754758in Indyuhova, FN (Ed.) Theory and practice of parasitic disease control. Moscow, All Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants.Google Scholar
Tamura, K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9, 678687.Google ScholarPubMed
Torgerson, PR and Craig, PS (2009) Risk assessment of importation of dogs infected with Echinococcus multilocularis into the UK. Veterinary Records 165, 366368.CrossRefGoogle ScholarPubMed
Voskár, J (1993) Ekológia vlka obyčajného (Canis lupus) a jeho podiel na formovaní a stabilite karpatských ekosystémov na Slovensku [The ecology of wolf Canis lupus and its share on the formalization and stability of the Carpathian ecosystems in Slovakia]. Ochrana prírody 12, 241276 (in Slovak with English summary).Google Scholar
Wright, I (2013) Tapeworms of UK cats and dogs: an update. The Veterinary Nurse 4, 550.CrossRefGoogle Scholar