Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T12:45:01.501Z Has data issue: false hasContentIssue false

Oxidative stress in dairy cows naturally infected with the lungworm Dictyocaulus viviparus (Nematoda: Trichostrongyloidea)

Published online by Cambridge University Press:  27 July 2016

A.D. da Silva
Affiliation:
Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
A.S. da Silva*
Affiliation:
Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
M.D. Baldissera
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
C.I. Schwertz
Affiliation:
Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
N.B. Bottari
Affiliation:
Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
G.M. Carmo
Affiliation:
Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
G. Machado
Affiliation:
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, USA
N.J. Lucca
Affiliation:
Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
L.C. Henker
Affiliation:
Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
M.M. Piva
Affiliation:
Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
P. Giacomin
Affiliation:
Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
V.M. Morsch
Affiliation:
Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
M.R.C. Schetinger
Affiliation:
Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
R.A. da Rosa
Affiliation:
Cooperativa de Produção e Consumo Concórdia (COPÉRDIA), Concórdia, SC, Brazil
R.E. Mendes
Affiliation:
Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
*
*Fax: 55 49 3311-9316 E-mail: dasilva.aleksandro@gmail.com

Abstract

The aim of this study was to analyse the oxidative and anti-oxidant status in serum samples from dairy cows naturally infected by Dictyocaulus viviparus and its relation with pathological analyses. The diagnosis of the disease was confirmed by necropsy of one dairy cow with heavy infection by the parasite in the lungs and bronchi. Later, blood and faeces were collected from another 22 cows from the same farm to measure reactive oxygen species (ROS) levels, thiobarbituric acid-reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activities on day 0 (pre-treatment) and day 10 (post-treatment with eprinomectin). Faecal examination confirmed the infection in all lactating cows. However, the number of D. viviparus larvae per gram of faeces varied between animals. Cows showed different degrees of severity according to respiratory clinical signs of the disease (cough and nasal secretion). Further, they were classified and divided into two groups: those with mild (n = 10) and severe disease (n = 12). Increased levels of TBARS (P < 0.001), ROS (P = 0.002) and SOD activity (P < 0.001), as well as reduced CAT activity (P < 0.001) were observed in cows with severe clinical signs of the disease compared to those with mild clinical signs. Eprinomectin treatment (day 10) caused a reduction of ROS levels (P = 0.006) and SOD activity (P < 0.001), and an increase of CAT activity (P = 0.05) compared to day 0 (pre-treatment). TBARS levels did not differ with treatment (P = 0.11). In summary, increased ROS production and lipid peroxidation altered CAT and SOD activities, as an adaptive response against D. viviparus infection, contributing to the occurrence of oxidative stress and severity of the disease. Treatment with eprinomectin eliminated the infection, and thus minimized oxidative stress in dairy cows.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S.F., Lebe, C.P. & Bondy, S.C. (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 113, 637648.Google Scholar
Baldissera, M.D., Oliveira, C.B., Rech, V.C., Rezer, J.P.R., Sagrillo, M.R., Alves, M.P., Da Silva, A.P.T., Leal, D.B.R., Boligon, A.A., Athayde, M.L., Da Silva, A.S., Mendes, R.E. & Monteiro, S.G. (2014) Treatment with essential oil of Achyrocline satureioides in rats infected with Trypanosoma evansi: relationship between protective effect and tissue damage. Pathology Research and Practice 210, 10681074.CrossRefGoogle ScholarPubMed
Bass, D.A., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M.C. & Thomas, M. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a grade response to membrane stimulation. Journal of Immunology 130, 19101917.CrossRefGoogle ScholarPubMed
Bateman, K.G., Baird, J.D., Slocombe, J.O., Leslie, K.E., Curtis, R.A. & Menzies, P.I. (1986) Verminous pneumonia in adult dairy cows in southern Ontario due to Dictyocaulus viviparus . Canadian Veterinary Journal 27, 233236.Google ScholarPubMed
Beyer, R.E., Segura-Aguilar, J., Di Bernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M.C., Setti, M., Landi, L. & Lenaz, G. (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proceedings of the National Academy of Sciences, USA 93, 25282532.CrossRefGoogle ScholarPubMed
Bottari, N.B., Mendes, R.E., Lucca, N.J., Schwertz, C.I., Henker, L.C., Olsson, D.C., Piva, M.M., Sangoi, M., Campos, L.P., Moresco, R.N., Jaques, J.A. & Da Silva, A.S. (2015) Oxidative stress associated with pathological lesions in the liver of rats experimentally infected by Fasciola hepatica . Experimental Parasitology 159, 2428.CrossRefGoogle ScholarPubMed
Costantini, D. (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecology Letters 11, 12381251.CrossRefGoogle ScholarPubMed
Da Silva, M.C., De Barros, R.R. & Graça, D.L. (2005) Surto de dictiocaulose em bovinos no município de Santa Maria, RS, Brasil. Ciência Rural 35, 629632.CrossRefGoogle Scholar
De Domínguez, N.D.G., Charris, J., Domínguez, J., Monasterios, M., Angel, J. & Rodrigues, J. (2015) Effects of 5,8-dimethylthienol [2,3-b] quinoline-2-carboxylic acid on the antioxidant defense and lipid membranes in Plasmodium berghei-infected erythrocytes. Experimental Parasitology 155, 2634.CrossRefGoogle Scholar
Dimri, U., Sharma, M.C., Yamdagni, A., Ranjan, R. & Zama, M.M.S. (2010) Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep. Veterinary Parasitology 168, 318322.CrossRefGoogle ScholarPubMed
Ferreira, A.L.A. & Matsubara, L.S. (1997) Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Revista da Associação Médica Brasileira 43, 6168.CrossRefGoogle Scholar
Fortes, E. (2004) Parasitologia veterinária. 4th edn. pp. 302307. São Paulo, Ícone.Google Scholar
Gao, H., Wang Di Zhang, S., Xu, M., Yang, W., Yan, P., Liu, Y., Luo, X., Wu, H., Yao, P., Yan, H. & Liu, L. (2015) Roles of mediated oxidative stress and DNA damage in 3-methyl-2-quinazolin benzenevinylketo-1,4-dioxide-induced immunotoxicity of Sprague–Dawley rats. Regulatory Toxicology and Pharmacology 73, 587594.CrossRefGoogle ScholarPubMed
Jentzsch, A.M., Bachmann, H., Furst, P. & Biesalski, H. (1996) Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine 20, 251256.CrossRefGoogle ScholarPubMed
Johnson, D.R., Sales, J. & Matthews, J.B. (2005) Local cytokine responses in Dictyocaulus viviparus infection. Veterinary Parasitology 128, 309318.CrossRefGoogle ScholarPubMed
Karsen, H., Sunnetcioglu, M., Ceylan, R.M., Bayraktar, M., Taskin, A., Aksoy, N. & Erten, R. (2011) Evaluation of oxidative status in patients with Fasciola hepatica infection. African Health Sciences 1, 1419.Google Scholar
Konradt, G., Bianchi, M.V., Fredo, G., Leite Filho, R.V., Dalto, A.C. & Pavarini, S.P. (2015) Surto de Dictiocaulose em bovinos de corte. Third Brazilian Meeting of Veterinary Pathology, Belo Horizonte, MG.Google Scholar
Machado, V., Da Silva, A.S., Schafer, A.S., Aires, A.R., Tonin, A.A., Oliveira, C.B., Hermes, C.L., Almeida, T.C., Moresco, R.N., Stefani, L.M., Lopes, S.T.A., Mendes, R.E., Schwertz, C.I. & Leal, M.L.R. (2014) Relationship between oxidative stress and pathological findings in abomasum of infected lambs by Haemonchus contortus . Pathology Research and Practice 210, 812817.CrossRefGoogle ScholarPubMed
Martin, R.J. & Robertson, A.P. (2007) Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 134, 10931094.CrossRefGoogle ScholarPubMed
Martins, F., Pereira, J.A. & Baptista, P. (2014) Oxidative stress response of Beauveria bassiana to Bordeaux mixture and its influence on fungus growth and development. Pest Management Science 70, 12201227.CrossRefGoogle ScholarPubMed
McCord, J.M. & Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244, 60496055.CrossRefGoogle ScholarPubMed
Monteiro, S.G. (2010) Parasitologia veterinária. São Paulo, Roca.Google Scholar
Nanev, V., Gabrashanska, M., Vladov, I. & Gunchev, Y. (2011) Oxidative stress in mouflons infected with lung worm Dictyocaulus viviparus . Trace Elements and Electrolytes 28, 162.CrossRefGoogle Scholar
Nelson, D.P. & Kiesow, L.A. (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry 49, 474478.CrossRefGoogle ScholarPubMed
Pamplona, R. & Costantini, D. (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 301, R843R863.CrossRefGoogle ScholarPubMed
Pivoto, F.L., Torbitz, V.N., Aires, A.R., da Rocha, J.F.X., Severo, M.M., Grando, T.H., Peiter, M., Moresco, R.N., da Rocha, J.B.T. & Leal, M.L.R. (2015) Oxidative stress by Haemochus contortus in lambs: influence of treatment with zinc edetate. Research in Veterinary Science 102, 2224.CrossRefGoogle Scholar
Ploeger, H.W. (2002) Dictyocaulus viviparus: re-emerging or never been away? Trends in Parasitology 18, 329331.CrossRefGoogle ScholarPubMed
Radostits, O.M., Gay, C.C., Blood, D.C. & Hinchcliff, K.W. (2002) Clínica veterinária, um tratado de doenças dos Bovinos, ovinos, suínos, caprinos e equinos. 9th edn. Rio de Janeiro, Guanabara e Koogan.Google Scholar
Ranjithkumar, M., Kamili, N.M., Saxena, A., Dan, A., Dey, S. & Raut, S.S. (2011) Disturbance of oxidative/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi . Veterinary Parasitology 180, 349353.CrossRefGoogle Scholar
Reuter, S., Gupta, S.C., Chaturvedi, M.M. & Aggarwal, B.B. (2010) Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine 49, 16031616.CrossRefGoogle ScholarPubMed
Rosenfeldt, F., Wilson, M., Lee, G., Kure, C., Ou, R., Braun, L. & de Hann., J. (2013) Oxidative stress in surgery in an ageing population: pathophysiology and therapy. Experimental Gerontology 48, 4554.CrossRefGoogle Scholar
Saatkamp, H.W., Eysker, M. & Verhoeff, J. (1994) Study on the causes of outbreaks of lungworm disease on commercial dairy farms in The Netherlands. Veterinary Parasitology 53, 253261.CrossRefGoogle Scholar
Siwela, A.H., Mambvura, C.I., Masanganise, K.E. & Dube, S. (2010) Oxidative stress associated with nematode infections in sheep: a preliminary study. International Journal of Biological and Chemical Sciences 4, 235240.CrossRefGoogle Scholar
Urquhart, G.M., Armour, J., Ducan, J.L., Dunn, A.M. & Jennings, F.W. (1998). Parasitologia veterinária. 2nd edn. Rio de Janeiro, Guanabara e Koogan, pp. 100102.Google Scholar
Wapenaar, W., Barkema, H.W., Eysker, M. & O'Handley, R.M. (2007) An outbreak of dictyocaulosis in lactating cows on a dairy farm. Journal of the American Veterinary Medical Association 231, 17151718.CrossRefGoogle ScholarPubMed
Wolkmer, P., Da Silva, A.S., Traesel, C.K., Paim, F.C., Cargnelutti, J.F., Pagnoncelli, M., Picada, M.E., Monteiro, S.G. & Lopes, S.T.A. (2009) Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi . Veterinary Parasitology 165, 4146.CrossRefGoogle ScholarPubMed
Xing, H., Li, S., Wang, Z., Gao, X., Xu, S. & Wang, X. (2012) Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide Biochemistry and Physiology 103, 7480.CrossRefGoogle Scholar