Hostname: page-component-599cfd5f84-56l7z Total loading time: 0 Render date: 2025-01-07T05:58:05.122Z Has data issue: false hasContentIssue false

Species-specific PCR for the identification of Cooperia curticei (Nematoda: Trichostrongylidae) in sheep

Published online by Cambridge University Press:  31 May 2013

M.R.V. Amarante*
Affiliation:
Departamento de Parasitologia, Instituto de Biociências, Unesp-Universidade Estadual Paulista, Botucatu, SP, BrazilCEP 18618-970
C.C. Bassetto
Affiliation:
Departamento de Parasitologia, Instituto de Biociências, Unesp-Universidade Estadual Paulista, Botucatu, SP, BrazilCEP 18618-970
J.H. Neves
Affiliation:
Departamento de Parasitologia, Instituto de Biociências, Unesp-Universidade Estadual Paulista, Botucatu, SP, BrazilCEP 18618-970
A.F.T. Amarante
Affiliation:
Departamento de Parasitologia, Instituto de Biociências, Unesp-Universidade Estadual Paulista, Botucatu, SP, BrazilCEP 18618-970

Abstract

Agricultural ruminants usually harbour mixed infections of gastrointestinal nematodes. A specific diagnosis is important because distinct species can differ significantly in their fecundity and pathogenicity. Haemonchus spp. and Cooperia spp. are the most important gastrointestinal nematodes infecting ruminants in subtropical/tropical environments. In Brazil, C. punctata is more adapted to cattle than sheep. Additionally, C. spatulata appears to be more adapted to cattle, whereas C. curticei is more adapted to sheep. However, infection of sheep with C. punctata is common when cattle and sheep share the same pasture. Although morphological analyses have been widely used to identify nematodes, molecular methods can overcome technical limitations and help improve species-specific diagnoses. Genetic markers in the first and second internal transcribed spacers (ITS-1 and ITS-2, respectively) of nuclear ribosomal DNA (rDNA) have been used successfully to detect helminths. In the present study, the ITS-1 region was analysed and used to design a species-specific oligonucleotide primer pair to identify C. curticei. The polymerase chain reaction (PCR) product was sequenced and showed 97% similarity to C. oncophora partial ITS-1 clones and 99% similarity to the C. curticei sequence JF680982. The specificity of this primer pair was corroborated by the analysis of 17 species of helminths, including C. curticei, C. punctata and C. spatulata. Species-specific diagnosis, which has implications for rapid and reliable identification, can support studies on the biology, ecology and epidemiology of trichostrongylid nematodes in a particular geographical location.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahluwalia, J.S. & Charleston, W.A.G. (1975) Studies on the pathogenicity of Cooperia curticei for sheep. New Zealand Veterinary Journal 23, 197199.Google Scholar
Amarante, A.F.T. (2000) Relationship between faecal egg counts and total worm counts in sheep infected with gastrointestinal nematodes. Brazilian Journal of Veterinary Parasitology 9, 4550.Google Scholar
Amarante, A.F.T., Bagnola, J. Jr, Amarante, M.R.V. & Barbosa, M.A. (1997) Host specificity of sheep and cattle nematodes in Sao Paulo state, Brazil. Veterinary Parasitology 73, 89104.CrossRefGoogle ScholarPubMed
Amarante, A.F.T., Bricarello, P.A., Rocha, R.A. & Gennari, S.M. (2004) Resistance of Santa Ines, Suffolk and Ile de France lambs to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology 120, 91106.CrossRefGoogle Scholar
Bott, N.J., Campbell, B.E., Beveridge, I., Chilton, N.B., Rees, D., Hunt, P.W. & Gasser, R.B. (2009) A combined microscopic–molecular method for the diagnosis of strongylid infections in sheep. International Journal for Parasitology 11, 12771287.CrossRefGoogle Scholar
Bricarello, P.A., Zaros, L.G., Coutinho, L.L., Rocha, R.A., Kooyman, F.N.J., Vries, E., Goncalves, J.R.S., Lima, L.G., Pires, A.V. & Amarante, A.F.T. (2007) Field study on nematode resistance in Nelore-breed cattle. Veterinary Parasitology 148, 272278.Google Scholar
Condi, G.K., Soutello, R.V.G. & Amarante, A.F.T. (2009) Moxidectin-resistant nematodes in cattle in Brazil. Veterinary Parasitology 161, 213217.CrossRefGoogle ScholarPubMed
Demeler, J., Schein, E. & Von Samson-Himmelstjerna, G. (2012) Advances in laboratory diagnosis of parasitic infections of sheep. Veterinary Parasitology 189, 5264.Google Scholar
Dorris, M., Viney, M.E. & Blaxter, M.L. (2002) Molecular phylogenetic analysis of the genus Strongyloides and related nematodes. International Journal for Parasitology 32, 15071517.CrossRefGoogle ScholarPubMed
Eysker, M. & Ploeger, H.W. (2000) Value of present diagnostic methods for gastrointestinal nematode infections in ruminants. Parasitology 120, 109119.Google Scholar
Gasser, R.B., Bott, N.J., Chilton, N.B., Hunt, P.W. & Beveridge, I. (2008) Toward practical DNA-based diagnostic methods for parasitic nematodes of livestock – bionomic and biotechnological implications. Biotechnology Advances 26, 325334.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Lichtenfels, J.R., Hoberg, E.P. & Zarlenga, D.S. (1997) Systematics of gastrointestinal nematodes of domestic ruminants: advances between 1992 and 1995 and proposals for future research. Veterinary Parasitology 72, 225245.Google Scholar
Lima, W.S. (1998) Seasonal infection pattern of gastrointestinal nematodes of beef cattle in Minas Gerais State-Brazil. Veterinary Parasitology 74, 203214.Google Scholar
Ploeger, H.W., Kloosterman, A., Eysker, M., Borgsteede, F.H.M., Van Straalen, W. & Verhoeff, J. (1990) Effect of naturally occurring nematode infections on growth performance of first-season grazing calves. Veterinary Parasitology 35, 307322.Google Scholar
Rocha, R.A., Bresciani, K.D.S., Barros, T.F.M., Fernandes, L.H., Silva, M.B. & Amarante, A.F.T. (2008) Sheep and cattle grazing alternately: nematode parasitism and pasture decontamination. Small Ruminant Research 75, 135143.Google Scholar
Roeber, F., Jex, A.R., Campbell, A.J.D., Campbell, B.E., Anderson, G.A. & Gasser, R.B. (2011) Evaluation and application of a molecular method to assess the composition of strongylid nematode populations in sheep with naturally acquired infections. Infection, Genetics and Evolution 11, 849854.Google Scholar
Rozen, S. & Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. pp. 365386in Krawetz, S. & Misener, S. (Eds) Bioinformatics methods and protocols: Methods in molecular biology. Totowa, NJ, Humana Press. Source code available athttp://fokker.wi.mit.edu/primer3/ (accessed accessed 1 August 2012).Google Scholar
Schnieder, T., Heise, M. & Epe, C. (1999) Genus-specific PCR for the differentiation of eggs or larvae from gastrointestinal nematodes of ruminants. Parasitology Research 85, 895898.CrossRefGoogle ScholarPubMed
Sweeny, J.P.A., Ryan, U.M. & Robertson, I.D. (2012) Molecular identification of naturally acquired strongylid infections in lambs – an investigation into how lamb age influences diagnostic sensitivity. Veterinary Parasitology 187, 227236.Google Scholar
Ueno, H. & Gonçalves, P.C. (1998) Características morfológicas de nematódeos gastrintestinais de ruminantes. pp. 8291in Manual para diagnóstico das helmintoses de ruminantes. 4th edn.Tokyo, Japan International Cooperation Agency.Google Scholar
Von Samson-Himmelstjerna, G., Harder, A. & Schnieder, T. (2002) Quantitative analysis of ITS-2 sequences in trichostrongyle parasites. International Journal for Parasitology 32, 15291535.CrossRefGoogle Scholar
Vrain, T.C., Wakarchuk, D.A., Levesque, A.C. & Hamilton, R.I. (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563573.Google Scholar
Waller, P.J. (2006) Sustainable nematode parasite control strategies for ruminant livestock by grazing management and biological control. Animal Feed Science and Technology 126, 277289.CrossRefGoogle Scholar
Xia, X. & Xie, Z. (2001) DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity 92, 371373.Google Scholar
Zarlenga, D.S., Chute, M.B., Gasbarre, L.C. & Boyd, P.C. (2001) A multiplex PCR assay for differentiating economically important gastrointestinal nematodes of cattle. Veterinary Parasitology 97, 199209.Google Scholar