Hostname: page-component-599cfd5f84-5kswg Total loading time: 0 Render date: 2025-01-07T05:34:17.278Z Has data issue: false hasContentIssue false

Steinernema jeffreyense n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa

Published online by Cambridge University Press:  11 March 2015

A.P. Malan*
Affiliation:
Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
R. Knoetze
Affiliation:
Directorate Inspection Services, Department of Agriculture, Forestry and Fisheries, Private Bag X5015, Stellenbosch7599, South Africa
L.R. Tiedt
Affiliation:
Laboratory for Electron Microscopy, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom2520, South Africa
*
*Fax: +27 21 8084807 E-mail: apm@sun.ac.za

Abstract

During a non-targeted survey for entomopathogenic nematodes in South Africa, a new species of Steinernema was isolated from a soil sample collected from underneath a guava tree, close to the shore at Jeffrey's Bay. The nematode was isolated by means of the insect-baiting technique using last-instar larvae of Galleria mellonella. It is described herein as Steinernema jeffreyense n. sp. The nematode can be separated from other described, closely related species in terms of the morphological and morphometric characteristics of the different life stages, and in terms of the characterization and phylogeny of DNA sequences of the internal transcribed spacer (ITS) rDNA of the 18S gene, and of the D2D3 region of the 28S rDNA gene. The new species is placed molecularly in the arenariumglaserikariilongicaudatum group characterized by the following morphological characters: infective third-stage juvenile with a body length of 926 (784–1043) μm, distance from head to excretory pore of 87 (78–107) μm, tail length of 81 (50–96) μm, with an E% of 109 (86–169), and eight evenly spaced ridges (i.e. nine lines) in the middle of the body. First-generation males have a spicule length of 88 (79–95) μm and gubernaculum length of 57 (51–61) μm. Male mucron is absent in both generations. First-generation females have an asymmetrical protuberance and a short, double-flapped epiptygmata, with both flaps directed to the front. The tail of the first-generation female is shorter than the anal body width, with a mucron on the dorsal tail tip, with D% = 78 (59–99). Cross-hybridization with S. khoisanae, S. tophus and S. innovationi showed the new species to isolate reproductively from the others. The analyses of ITS rDNA and D2D3 sequence of the 18S and 28S rDNA genes support the studied nematode isolate to be a valid new species belonging to the ‘glaseri’ group (Clade V).

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedding, R.A. & Akhurst, R.J. (1975) A simple techique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21, 109110.Google Scholar
Çimen, H., Lee, M.-M., Hatting, J., Hazir, S. & Stock, S.P. (2014a) Steinernema innovationi n. sp. (Panagrolaimomorpha: Steinernematidae), a new entomopathogenic nematode species from South Africa. Journal of Helminthology, doi:10.1017/S0022149X14000182.Google Scholar
Çimen, H., Lee, M.-M.H.J., Hazir, S. & Stock, P.S. (2014b) Steinernema tophus sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from South Africa. Zootaxa 3821, 337353.Google Scholar
Courtney, W.D., Polley, D. & Miller, V.I. (1955) TAF, an improved fixative in nematode technique. Plant Disease Reporter 39, 570571.Google Scholar
De Waal, J.Y., Malan, A.P. & Addison, M.F. (2011) Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in temperate regions. Biocontrol Science and Technology 20, 489502.Google Scholar
De Waal, J.Y., Addison, M.F. & Malan, A.P. (2013) Effect of humidity and a superabsorbent polymer formulation on the efficacy of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) to control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology 23, 6278.Google Scholar
Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist 124, 115.Google Scholar
Hatting, J., Stock, P.S. & Hazir, S. (2009) Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Journal of Invertebrate Pathology 102, 120128.CrossRefGoogle ScholarPubMed
Kaya, H.K. & Gaugler, R. (1993) Entomopathogenic nematodes. Annual Review of Entomology 38, 181206.Google Scholar
Kaya, H.K. & Stock, S.P. (1997) Techniques in insect nematology. pp. 281324 in Lacey, L. (Ed.) Manual of techniques in insect pathoglogy. San Diego, California, Academic Press.Google Scholar
Khatri-Chhetri, H.B., Waeyenberge, L., Spiridonov, S., Manadhar, H.K. & Moens, M. (2011) Steinernema lamjungense n. sp. (Rhabditida: Steinernematidae), a new species of entomopathogenic nematode from Lamjung district, Nepal. Nematology 13, 589605.CrossRefGoogle Scholar
Kulkarni, N., Rizvi, A.N., Kumar, V., Paunikar, S. & Mishra, V.K. (2012) Morphological and molecular characterization of Steinernema dharanaii sp. n.: a new entomopathogenic nematode from India. Indian Journal of Tropical Biodiversity 20, 107116.Google Scholar
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.Google Scholar
Malan, A.P., Nguyen, K.B. & Addison, M.F. (2006) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. African Plant Protection 12, 6569.Google Scholar
Malan, A.P., Nguyen, K.B., De Waal, J.Y. & Tiedt, L. (2008) Heterorhabditis safricana n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Nematology 10, 381396.Google Scholar
Malan, A.P., Knoetze, R. & Moore, S.D. (2011) Isolation and identification of entomopathogenic nematodes from citrus orchards and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology 108, 115125.CrossRefGoogle ScholarPubMed
Malan, A.P., Knoetze, R. & Tiedt, L.R. (2014) Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Journal of Helminthology 88, 138151.CrossRefGoogle Scholar
Mráček, Z. (1994) Steinernema kraussei (Steiner, 1923) (Nematoda: Rhabditida: Steinernematidae), a re-description of its topotype from Westphalen. Folia Parasitologica 41, 5964.Google Scholar
Nei, M & Kumar, S. (2000) Molecular evolution and phylogenetics. Oxford, Oxford University Press.Google Scholar
Nguyen, K.B. (2007) Methodology, morphology and identification. pp. 59119 in Nguyen, K. & Hunt, D.J. (Eds) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Leiden, Brill.Google Scholar
Nguyen, K.B., Malan, A.P. & Gozel, U. (2006) Steinernema khoisanae n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 8, 157175.Google Scholar
Nguyen, K.B., Hunt, D.J. & Mráček, Z. (2007) Steinernematidae: species descriptions. pp. 121609 in Nguyen, K. & Hunt, D.J. (Eds) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Leiden, Brill.Google Scholar
Nthenga, I., Knoetze, R., Berry, S., Tiedt, L.R. & Malan, A.P. (2014) Steinernema sacchari n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 16, 475494.CrossRefGoogle Scholar
Qiu, L.H., Fang, Y.Y., Zhou, Y., Pang, Y. & Nguyen, K.B. (2004) Steinernema guangdongense sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from southern China with a note on S. serratum (nomen nudum). Zootaxa 704, 120.Google Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Seinhorst, J.W. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4, 6769.Google Scholar
Spiridonov, S.E., Reid, A.P., Podrucka, K., Subbotin, S.A. & Moens, M. (2004) Phylogenetic relationships within the genus Steinernema (Nematoda : Rhabditida) as inferred from analyses of sequences of the ITS-I-5.8S-ITS2 region of rDNA and morphological features. Nematology 6, 547566.Google Scholar
Stokwe, N.F., Malan, A.P., Nguyen, K.B., Knoetze, R. & Tiedt, L.R. (2011) Steinernema citrae n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 13, 567587.CrossRefGoogle Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kamur, S. (2013) MEGA6: Molecular evolutionary genetic analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Vrain, T.C., Wakarchuck, D.A., Lèvesque, A.C. & Hamilton, R.I. (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563573.Google Scholar