Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T03:37:18.277Z Has data issue: false hasContentIssue false

Analysis on arithmetic schemes. II

Published online by Cambridge University Press:  20 May 2010

Ivan Fesenko
Affiliation:
Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD, UK, Ivan.Fesenko@nottingham.ac.uk
Get access

Abstract

We construct adelic objects for rank two integral structures on arithmetic surfaces and develop measure and integration theory, as well as elements of harmonic analysis. Using the topological Milnor K2-delic and K1×K1-delic objects associated to an arithmetic surface, an adelic zeta integral is defined. Its unramified version is closely related to the square of the zeta function of the surface. For a proper regular model of an elliptic curve over a global field, a two-dimensional version of the theory of Tate and Iwasawa is derived. Using adelic analytic duality and a two-dimensional theta formula, the study of the zeta integral is reduced to the study of a boundary integral term. The work includes first applications to three fundamental properties of the zeta function: its meromorphic continuation and functional equation and a hypothesis on its mean periodicity; the location of its poles and a hypothesis on the permanence of the sign of the fourth logarithmic derivative of a boundary function; and its pole at the central point where the boundary integral explicitly relates the analytic and arithmetic ranks.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Beilinson, A.A., Residues and adeles, Funct. Anal. Appl. 14 (1980), 3435.Google Scholar
2.Berenstein, C.A., Gay, R., Complex analysis and special topics in harmonic analysis, Springer 1995.CrossRefGoogle Scholar
3.Berenstein, C.A., Struppa, D., Complex analysis and convolution equations, in Several complex variables. V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia of Mathematical Sciences, 54, Springer, 1993, pp. 1108.CrossRefGoogle Scholar
4.Bloch, S., De Rham cohomology and conductors of curves, Duke Math. J. 54 (1987), 295308.Google Scholar
5.Bloch, S., Higher regulators, algebraic K-theory, and zeta functions for elliptic curves, CRM series, 11, AMS, 2000.Google Scholar
6.Braverman, A., Kazhdan, D., Some examples of Hecke algebras over 2-dimensional local fields, Nagoya Math. J. 184 (2006), 5784.Google Scholar
7.Cogdell, J. W., Kim, H. H., Murty, M.R., Lectures on automorphic L-functions, Fields Inst. Monogr., 20, AMS, 2004.Google Scholar
8.Dwork, B., On the rationality of the zeta function of an algebraic variety, Amer. Journ. Math. 82 (1960), 631648.CrossRefGoogle Scholar
9.Fesenko, I., Explicit higher local class field theory, in [15], 95101.Google Scholar
10.Fesenko, I., Sequential topologies and quotients of Milnor K-groups of higher local fields, Algebra i Analiz, 13 (2001), issue 3, 198221; English transl. in St. Petersburg Math. J. 13 (2002), 485501.Google Scholar
11.Fesenko, I., Analysis on arithmetic schemes. I, Docum. Math. Extra Volume Kato (2003) 261284; available from www.maths.nott.ac.uk/personal/ibf/a1.pdfCrossRefGoogle Scholar
12.Fesenko, I., Measure, integration and elements of harmonic analysis on generalized loop spaces, Proc. of St Petersburg Math. Soc. 12(2005), 179199; English transl. in AMS Transl. Series 2, 219 (2006), 149164.Google Scholar
13.Fesenko, I., Tables of values of ZE.X/, available from www.maths.nott.ac.uk/personal/ibf/comp.htmlGoogle Scholar
14.Fesenko, I., Adelic approach to the zeta function of arithmetic schemes in dimension two, Moscow Math. J. 8 (2008), 273317.Google Scholar
15.Fesenko, I. and Kurihara, M. (eds.) Invitation to higher local fields, Geometry and Topology Monographs, 3, Geometry and Topology Publications, Warwick, 2000.Google Scholar
16.Gaitsgory, D., Kazhdan, D., Representations of algebraic groups over a 2-dimensional local field. Geom. Funct. Anal. 14 (2004), no. 3, 535574.CrossRefGoogle Scholar
17.Gilbert, J.E., On the ideal structure of some algebras of analytic functions, Pacific J. Math. 35 (1970), 625634.Google Scholar
18.Godement, R., Jacquet, H., Zeta functions of simple algebras, Lect. Notes in Math., 260, Springer, 1972.Google Scholar
19.Green, B., On the Riemann-Roch theorem for orders in the ring of valuation vectors of a function field, Manuscr. Math. 60 (1988), 259276.Google Scholar
20.Gurarii, V.P., Group methods in commutative harmonic analysis. Commutative har monic analysis II, Encyclopedia Math. Sci. 25, Springer, 1998.Google Scholar
21.Hasse, H., Zetafunktion und L-Funktionen zu einem arithmetischen Funktionenkörper vom Fermatschen Typus, Abh. Deutsche akad. Wiss. Berlin Mat.-Nat. Kl., 4 (1954), 550.Google Scholar
22.Hrushovski, E., Kazhdan, D., Integration in valued fields, In Drinfeld Festschrift, Algebraic geometry and number theory, 261405, Progr. Math., 253, Birkhäuser Boston, 2006.Google Scholar
23.Hrushovski, E., Kazhdan, D., with appendix by N. Avni, The value ring of geometric motivic integration, and the Iwahori Hecke algebra of SL2, Geom. funct. anal. 17 (2008), 19241967.Google Scholar
24.Iwasawa, K., A note on functions, Proceed. ICM Cambridge, Mass., 1950, p.322, AMS 1952.Google Scholar
25.Iwasawa, K., Letter to J. Dieudonne, Adv. Stud. Pure Math., 21, 1992, 445450.Google Scholar
26.Kahane, J.-P., Lectures on mean periodic functions, Tata Institute of Fund. Research, Bombay 1959.Google Scholar
27.Kato, K., A generalization of local class field theory by using K-groups, III, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 29 (1982), 3143.Google Scholar
28.Kato, K. and Saito, Sh., Unramified class field theory of arithmetical surfaces, Ann. of Math. (2) 118 (1983), 241275.Google Scholar
29.Kato, K. and Saito, Sh., Two-dimensional class field theory, Adv. Stud. Pure Math., 2, 1983, 103152.Google Scholar
30.Kato, K. and Saito, Sh., Global class field theory of arithmetic schemes, Contemp. Math., 55 part I, 1986,255331.CrossRefGoogle Scholar
31.Kazhdan, D., Fourier transform over local fields. Milan J. Math. 74 (2006), 213225.Google Scholar
32.Kim, H., Lee, K.-H., Spherical Hecke algebras of SL2 over 2-dimensional local fields, Amer. J. Math. 126 (2004), no. 6, 13811399.Google Scholar
33.Kim, H., Lee, K.-H., An invariant measure on GLn over 2-dimensional local fields, Math. Preprint Series Univ. Nottingham, 2005.06.Google Scholar
34.Korevaar, J., Tauberian theory, Springer, 2004.Google Scholar
35.Laumon, G., Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, IHES Publ. Math. 65 (1987), 131210.Google Scholar
36.Lee, K.-H., Iwahori-Hecke Algebras of SL2 over 2-dimensional local fields, math.RT/0506115, to appear in Canad. J. Math.Google Scholar
37.Liu, Q., Arithmetic geometry and arithmetic curves, Oxford Univ. Press, 2006.Google Scholar
38.Meyer, Y., Algebraic numbers and harmonic analysis, North-Holland, 1972.Google Scholar
39.Morrow, M., Integration on valuation fields over local fields, arXiv:0712.2172, to appear in Tokyo J. Math.Google Scholar
40.Morrow, M., Integration on product spaces and GLn of a valuation field over a local field, Comm. Number Theory and Physics, 2 (2008), 563592.Google Scholar
41.Morrow, M., Fubini's theorem for certain integrals over a two-dimensional local field, arXiv:0712.2177.Google Scholar
42.Nikolskiĭ, N.K., Invariant subspaces in the theory of operators and theory of functions, J. Math. Sci. 5 (1976), 129249.Google Scholar
43.Nikolskiĭ, N.K., Elementary description of the methods of localizing ideals, Zap. Nauchn. Sem. LOMI170 (1989), 207232; English transl. in J. Soviet Math. 63 (1993), 233245.Google Scholar
44.Parshin, A.N., On the arithmetic of two-dimensional schemes, 1, Repartitions and residues, Izv. Akad. Nauk Ser. Mat. 40 (1976), no. 4, 736773; Engl. transl. in Math. Izv., 10 (1976), 695747.Google Scholar
45.Parshin, A.N., Abelian coverings of arithmetic schemes, Dokl. Akad. Nauk SSSR 243 (1978), no. 4, 855858.Google Scholar
46.Parshin, A.N., Chern classes, adeles and L-functions, J. für die reine und angew. Math., 341 (1983), 174192.Google Scholar
47.Quillen, D., Higher algebraic K-theory I, in Algebraic K-theory, Lect. Notes Math. 341 (1973), 85147.CrossRefGoogle Scholar
48.Rubinstein, M., Zeros of L-functions, pmmac03.math.uwaterloo.ca/˜mrubinst/L_function_public/zerosGoogle Scholar
49.Serre, J.-P., Groupes algébriques et corps de classes, 2nd ed., Hermann, Paris, 1975.Google Scholar
50.Serre, J.-P., Zeta and L functions, Arithm. Alg. Geometry, Harper and Row, New York, 1965, 8292.Google Scholar
51.Serre, J.-P., Facteurs locaux des fonctions zeta des variétés algébriques (définitions et conjectures), Sémin. Delange-Pisot-Poitou, 19, 1969/1970.Google Scholar
52.Shioda, T., On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 2059.Google Scholar
53.Silverman, J., Advanced topics in the arithmetic of elliptic curves, Springer, 1994.Google Scholar
54.Suzuki, M., Nonpositivity of certain functions associated to analysis on elliptic surfaces, math.NT/0703052Google Scholar
55.Suzuki, M., Two dimensional adelic analysis and cuspidal automorphic representations of GL.(2), arXiv:0805.4547; to appear in MDS Edinburgh Conf. Proc., Birkhäuser.Google Scholar
56.Suzuki, M., Ricotta, G., Fesenko, I., Mean-periodicity and zeta functions, 2008, arxiv.org/abs/0803.2821Google Scholar
57.Tate, J., Fourier analysis in number fields and Hecke's zeta function, thesis, Princeton Univ., 1950; reproduced in Algebraic number theory, eds. Cassels, J. and Fröhlich, A., Academic Press 1967.Google Scholar
58.Tate, J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Sémin. Bourbaki, 306, 1965/1966.Google Scholar
59.Weil, A., Fonctions zeta et distributions, Sémin. Bourbaki, 312, 1965/1966.Google Scholar
60.Weil, A., Basic number theory, Springer, 1967.Google Scholar
61.Weil, A., Dirichlet series and automorphic forms, Lect. Notes Math. 189, Springer, 1971.CrossRefGoogle Scholar
62.Weil, A., Adeles and algebraic groups, Birkhäuser, 1982.Google Scholar
63.Widder, D.V., The Laplace transform, Princeton Univ. Press, 1941.Google Scholar
64.Widder, D.V., An introduction to transform theory, Academic Press, 1971.Google Scholar
65.Yekutieli, A., An explicit construction of the Grothendieck residue complex, Asterisque 208, 1992.Google Scholar
66.Yekutieli, A., Residues and differential operators on schemes, Duke Math. J. 95 (1998), 305341.CrossRefGoogle Scholar
67.Zhukov, I., Milnor and topological K-groups of higher dimensional complete fields, Algebra i Analiz 9 (1997), no. 1, 98147; Engl. transl. in St. Petersburg Math. J. 9 (1998), 69105.Google Scholar
68.Zhukov, I., Higher dimensional local fields, in ‘15’, 518.Google Scholar