Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T14:11:22.412Z Has data issue: false hasContentIssue false

Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides

Published online by Cambridge University Press:  30 May 2012

André Schleife*
Affiliation:
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550; and European Theoretical Spectroscopy Facility
Friedhelm Bechstedt
Affiliation:
Institut für Festkörpertheorie und –optik, Friedrich-Schiller-Universität, 07743 Jena, Germany; and European Theoretical Spectroscopy Facility
*
a)Address all correspondence to this author. e-mail: a.schleife@llnl.gov
Get access

Abstract

Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical absorption spectra (including excitonic effects) for several transparent conducting oxides (TCOs). We discuss HSE+G0W0 results (based on the hybrid exchange-correlation functional by Heyd, Scuseria, and Ernzerhof, and quasiparticle corrections from approximating the electronic self energy as the product of the Green’s function and the screened Coulomb interaction) for band structures, fundamental band gaps, and effective electron masses of magnesium oxide, zinc oxide, cadmium oxide, tin dioxide, tin oxide, indium (III) oxide and silicon dioxide. The Bethe–Salpeter equation (BSE) is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G0W0 approach and the solution of the BSE are very well suited to describe the electronic structure and the optical properties of various TCOs in good agreement with experiment.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ginley, D.S. and Bright, C.: Transparent conducting oxides. MRS Bull. 25, 18 (2000).CrossRefGoogle Scholar
2.Fortunato, E., Ginley, D., Hosono, H., and Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 247 (2007).CrossRefGoogle Scholar
3.Schleife, A., Rödl, C., Furthmüller, J., and Bechstedt, F.: Electronic and optical properties of MgxZn1−xO and Cdx Zn1−xO from ab initio calculations. New J. Phys. 13(8), 085012 (2011).CrossRefGoogle Scholar
4.Seko, A., Togo, A., Oba, F., and Tanaka, I.: Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 100, 045702 (2008).Google Scholar
5.Lany, S. and Zunger, A.: Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 98, 045501 (2007).CrossRefGoogle ScholarPubMed
6.Sernelius, B.E., Berggren, K-F., Jin, Z-C., Hamberg, I., and Granqvist, C.G.: Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37(17), 1024410248 (1988).CrossRefGoogle ScholarPubMed
7.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.: Tin-doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83(5), 26312645 (1998).Google Scholar
8.Li, Z.Q., Yin, Y.L., Liu, X.D., Li, L.Y., Liu, H., and Song, Q.G.: Electronic structure and optical properties of Sb-doped SnO2. J. Appl. Phys. 106(8), 083701 (2009).CrossRefGoogle Scholar
9.White, M.E., Bierwagen, O., Tsai, M.Y., and Speck, J.S.: Electron transport properties of antimony-doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106(9), 093704 (2009).CrossRefGoogle Scholar
10.Buchholz, D.B., Liu, J., Marks, T.J., Zhang, M., and Chang, R.P.H.: Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films. ACS Appl. Mater. Interfaces 1(10), 21472153 (2009).Google Scholar
11.Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).CrossRefGoogle Scholar
12.Sun, J., Lu, A., Wang, L., Hu, Y., and Wan, Q.: High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature. Nanotechnology 20(33), 335204 (2009).CrossRefGoogle ScholarPubMed
13.Bierwagen, O. and Speck, J.S.: High electron mobility In2O3 (001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 97(7), 072103 (2010).CrossRefGoogle Scholar
14.Badawy, W.A.: Improvement of n-Si/SnO2 electrolyte photoelectrochemical cells by Ru deposits. J. Electroanal. Chem. 281(1–2), 8595 (1990).CrossRefGoogle Scholar
15.Lunt, R.R. and Bulovic, V.: Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98(11), 113305 (2011).CrossRefGoogle Scholar
16.Klein, A., Körber, C., Wachau, A., Säuberlich, F., Gassenbauer, Y., Harvey, S.P., Proffit, D.E., and Mason, T.O.: Transparent conducting oxides for photovoltaics: Manipulation of Fermi level, work function and energy band alignment. Materials 3(11), 48924914 (2010).CrossRefGoogle ScholarPubMed
17.Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327 (2006).CrossRefGoogle Scholar
18.Reyes-Gil, K.R., Reyes-García, E.A., and Raftery, D.: Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111(39), 1457914588 (2007).CrossRefGoogle Scholar
19.Nagata, T., Bierwagen, O., White, M.E., Tsai, M.Y., Yamashita, Y., Yoshikawa, H., Ohashi, N., Kobayashi, K., Chikyow, T., and Speck, J.S.: XPS study of Sb-/In-doping and surface pinning effects on the Fermi level in SnO2 (101) thin films. Appl. Phys. Lett. 98(23), 232107 (2011).Google Scholar
20.Piper, L.F.J., Colakerol, L., King, P.D.C., Schleife, A., Zúñiga-Pérez, J., Glans, P-A., Learmonth, T., Federov, A., Veal, T.D., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., McConville, C.F., and Smith, K.E.: Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78(16), 165127 (2008).CrossRefGoogle Scholar
21.Allen, M.W., Swartz, C.H., Myers, T.H., Veal, T.D., McConville, C.F., and Durbin, S.M.: Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B 81, 075211 (2010).Google Scholar
22.Bierwagen, O., Speck, J.S., Nagata, T., Chikyow, T., Yamashita, Y., Yoshikawa, H., and Kobayashi, K.: Depletion of the In2O3 (001) and (111) surface electron accumulation by an oxygen plasma surface treatment. Appl. Phys. Lett. 98(17), 172101 (2011).CrossRefGoogle Scholar
23.Allen, M.W., Zemlyanov, D.Y., Waterhouse, G.I.N., Metson, J.B., Veal, T.D., McConville, C.F., and Durbin, S.M.: Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Appl. Phys. Lett. 98(10), 101906 (2011).CrossRefGoogle Scholar
24.Küfner, S.: Ab initio untersuchung von zinnmonoxid- und zinndioxidoberflächen. Master’s Thesis, Friedrich-Schiller-University, Jena, 2011.Google Scholar
25.Ágoston, P. and Albe, K.: Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces. Phys. Rev. B 84, 045311 (2011).Google Scholar
26.Kong, X.Y. and Wang, Z.L.: Structures of indium oxide nanobelts. Solid State Commun. 128(1), 14 (2003).CrossRefGoogle Scholar
27.Li, Y., Bando, Y., and Golberg, D.: Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 15(7–8), 581585 (2003).Google Scholar
28.Beltrán, A., Andrés, J., Longo, E., and Leite, E.R.: Thermodynamic argument about SnO2 nanoribbon growth. Appl. Phys. Lett. 83(4), 635637 (2003).CrossRefGoogle Scholar
29.Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 15151520 (2010).CrossRefGoogle ScholarPubMed
30.Müller, V., Rasp, M., Štefanić, G., Ba, J., Günther, S., Rathousky, J., Niederberger, M., and Fattakhova-Rohlfing, D.: Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure. Chem. Mater. 21(21), 52295236 (2009).Google Scholar
31.Wagner, M.R., Schulze, J-H., Kirste, R., Cobet, M., Hoffmann, A., Rauch, C., Rodina, A.V., Meyer, B.K., Röder, U., and Thonke, K.: Γ7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies. Phys. Rev. B 80, 205203 (2009).Google Scholar
32.Wagner, M.R., Callsen, G., Reparaz, J.S., Schulze, J-H., Kirste, R., Cobet, M., Ostapenko, I.A., Rodt, S., Nenstiel, C., Kaiser, M., Hoffmann, A., Rodina, A.V., Phillips, M.R., Lautenschläger, S., Eisermann, S., and Meyer, B.K.: Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Phys. Rev. B 84, 035313 (2011).CrossRefGoogle Scholar
33.Matino, F., Persano, L., Arima, V., Pisignano, D., Blyth, R.I.R., Cingolani, R., and Rinaldi, R.: Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B 72, 085437 (2005).CrossRefGoogle Scholar
34.Wang, C.Y., Cimalla, V., Romanus, H., Kups, T., Ecke, G., Stauden, T., Ali, M., Lebedev, V., Pezoldt, J., and Ambacher, O.: Phase-selective growth and properties of rhombohedral and cubic indium oxide. Appl. Phys. Lett. 89(1), 011904 (2006).CrossRefGoogle Scholar
35.Lambrecht, W.R.L., Rodina, A.V., Limpijumnong, S., Segall, B., and Meyer, B.K.: Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys. Rev. B 65(7), 075207 (2002).CrossRefGoogle Scholar
36.Robertson, J.: Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C: Solid State Phys. 12(22), 4767 (1979).Google Scholar
37.Svane, A. and Antoncik, E.: Electronic structure of rutile SnO2, GeO2 and TeO2. J. Phys. Chem. Solids 48(2), 171180 (1987).CrossRefGoogle Scholar
38.Reimann, K. and Steube, M.: Experimental determination of the electronic band structure of SnO2. Solid State Commun. 105(10), 649652 (1998).Google Scholar
39.Fuchs, F., Furthmüller, J., Bechstedt, F., Shishkin, M., and Kresse, G.: Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 76(11), 115109 (2007).Google Scholar
40.Bechstedt, F., Fuchs, F., and Kresse, G.: Ab initio theory of semiconductor band structures: New developments and progress. Phys. Status Solidi B 246(8), 18771892 (2009).CrossRefGoogle Scholar
41.Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Ab initio theory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO. Phys. Rev. B 77(18), 184408 (2008).CrossRefGoogle Scholar
42.Bechstedt, F., Fuchs, F., and Furthmüller, J.: Spectral properties of InN and its native oxide from first principles. Phys. Status Solidi A, 207(5), 10411053 (2010).CrossRefGoogle Scholar
43.Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations. Phys. Rev. B 80(3), 035112 (2009).Google Scholar
44.Schleife, A., Varley, J.B., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., and Van de Walle, C.G.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83(3), 035116 (2011).CrossRefGoogle Scholar
45.Schleife, A.: Exciting imperfection: Real-structure effects in magnesium-, cadmium-, and zinc-oxide. Ph.D Thesis, Friedrich-Schiller-Universität, Jena, 2010.Google Scholar
46.Schleife, André: Electronic and Optical Properties of MgO, ZnO, and CdO (Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, Germany, 2011).Google Scholar
47.Yan, Q., Rinke, P., Winkelnkemper, M., Qteish, A., Bimberg, D., Scheffler, M., and Van de Walle, C.G.: Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 26(1), 014037 (2011).CrossRefGoogle Scholar
48.Schleife, A., Eisenacher, M., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1−xO and CdxZn1−xO. Phys. Rev. B 81(24), 245210 (2010).Google Scholar
49.Schleife, A. and Bechstedt, F.: Real-structure effects: Absorption edge of MgxZn1−xO, CdxZn1−xO, and n-type ZnO from ab initio calculations. Proc. SPIE 8263(1), 826309 (2012).CrossRefGoogle Scholar
50.Rinke, P., Schleife, A., Kioupakis, E., Janotti, A., Rödl, C., Bechstedt, F., Scheffler, M., and Van de Walle, C.G.: First-principles optical spectra for F centers in MgO. Phys. Rev. Lett. 108, 126404 (2012).CrossRefGoogle ScholarPubMed
51.Furthmüller, J., Hachenberg, F., Schleife, A., Rogers, D., Teherani, F.H., and Bechstedt, F.: Clustering of N impurities in ZnO. Appl. Phys. Lett. 100(2), 022107 (2012).Google Scholar
52.Schleife, A., Rödl, C., Fuchs, F., Hannewald, K., and Bechstedt, F.: Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? Phys. Rev. Lett. 107, 236405 (2011).Google Scholar
53.Ágoston, P., Albe, K., Nieminen, R.M., and Puska, M.J.: Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid functional study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 103, 245501 (2009).Google Scholar
54.Ágoston, P., Körber, C., Klein, A., Puska, M.J., Nieminen, R.M., and Albe, K.: Limits for n-type doping in In2O3 and SnO2: A theoretical approach by first-principles calculations using hybrid functional methodology. J. Appl. Phys. 108(5), 053511 (2010).Google Scholar
55.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864B871 (1964).CrossRefGoogle Scholar
56.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133A1138 (1965).CrossRefGoogle Scholar
57.Schleife, A., Fuchs, F., Furthmüller, J., and Bechstedt, F.: First-principles study of ground- and excited state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73(24), 245212 (2006).CrossRefGoogle Scholar
58.Küfner, S., Schleife, A., and Bechstedt, F.: Unpublished work, 2012.Google Scholar
59.Fuchs, F. and Bechstedt, F.: Indium oxide polymorphs from first-principles: Quasiparticle electronic states. Phys. Rev. B 77(15), 155107 (2008).Google Scholar
60.Fuchs, F.: Private communication, 2011.Google Scholar
61.Höffling, B., Schleife, A., Rödl, C., and Bechstedt, F.. Band discontinuities at Si–TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches. Phys. Rev. B 85, 035305 (2012).Google Scholar
62.Hybertsen, M.S. and Louie, S.G.: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34(8), 53905413 (1986).CrossRefGoogle ScholarPubMed
63.Perdew, J.P. and Levy, M.: Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 18841887 (1983).Google Scholar
64.Sham, L.J. and Schlüter, M.: Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 18881891 (1983).CrossRefGoogle Scholar
65.Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796A823 (1965).Google Scholar
66.Hedin, L. and Lundqvist, S.: Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, in Advances in Research and Applications of Solid State Physics, Vol. 23, edited by Seiz, D.T.F. and Ehrenreich, H. (Academic Press, Waltham, MA, 1970); pp. 1181.Google Scholar
67.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Erratum: “Hybrid functionals based on a screened coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys., 124():219906, 2006.Google Scholar
68.Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., and Ángyán, J.G.: Screened hybrid density functionals applied to solids. J. Chem. Phys. 124(15), 154709 (2006).CrossRefGoogle ScholarPubMed
69.Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., and Ángyán, J.G.: Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)].J. Chem. Phys., 125():249901, 2006.CrossRefGoogle Scholar
70.Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., Bechstedt, F., Jefferson, P.H., Veal, T.D., McConville, C.F., Piper, L.F.J., DeMasi, A., Smith, K.E., Lösch, H., Goldhahn, R., Cobet, C., Zúñiga-Pérez, J., and Muñoz-Sanjosé, V.: Ab initio studies of electronic and spectroscopic properties of MgO, ZnO, and CdO. J. Korean Phys. Soc. 53(5), 28112815 (2008).CrossRefGoogle Scholar
71.Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., and Bechstedt, F.: Band-structure and optical transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations. Phys. Status Solidi B 246(9), 21502153 (2009).CrossRefGoogle Scholar
72.Hobbs, D., Kresse, G., and Hafner, J.: Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62(17), 1155611570 (2000).CrossRefGoogle Scholar
73.Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Strain influence on valence-band ordering and excitons in ZnO: An ab initio study. Appl. Phys. Lett. 91(24), 241915 (2007).Google Scholar
74.Anisimov, V.I., Zaanen, J., and Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943954 (1991).CrossRefGoogle Scholar
75.Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 15051509 (1998).CrossRefGoogle Scholar
76.Aulbur, W.G., Jönsson, L., and Wilkins, J.W.: Quasiparticle calculations in solids, in Advances in Research and Applications of Solid State Physics, Vol. 54, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, Waltham, MA, 1999); pp. 1218.Google Scholar
77.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 1116911186 (1996).CrossRefGoogle ScholarPubMed
78.Kresse, G. and Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 1550 (1996).Google Scholar
79.Shishkin, M. and Kresse, G.: Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74(3), 035101, (2006).Google Scholar
80.Blöchl, P.E.. Projector augmented-wave method. Phys. Rev. B 50(24), 1795317979 (1994).CrossRefGoogle ScholarPubMed
81.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 17581775 (1999).Google Scholar
82.Strinati, G.: Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11(12), 186 (1988).Google Scholar
83.Onida, G., Reining, L., and Rubio, A.: Electronic excitations: Density functional versus many-body Green’s function approaches. Rev. Mod. Phys. 74(2), 601659 (2002).Google Scholar
84.Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79(23), 235114 (2009).CrossRefGoogle Scholar
85.Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73(4), 045112 (2006).CrossRefGoogle Scholar
86.Albrecht, S., Reining, L., Del Sole, R., and Onida, G.: Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80(20), 45104513 (1998).Google Scholar
87.Benedict, L.X., Shirley, E.L., and Bohn, R.B.: Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett. 80(20), 45144517 (1998).Google Scholar
88.Rohlfing, M. and Louie, S.G.: Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81(11), 23122315 (1998).CrossRefGoogle Scholar
89.Fuchs, F., Rödl, C., Schleife, A., and Bechstedt, F.. Efficient O(N 2) approach to solve the Bethe-Salpeter equation for excitonic bound states. Phys. Rev. B 78(8), 085103 (2008).Google Scholar
90.Schmidt, W.G., Glutsch, S., Hahn, P.H., and Bechstedt, F.: Efficient O(N 2) method to solve the Bethe-Salpeter equation. Phys. Rev. B 67(8), 085307 (2003).Google Scholar
91.Kronig, R.de L.: On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12(6), 547556 (1926).Google Scholar
92.Kramers, H.A.: Some remarks on the theory of absorption and refraction of x-rays. Nature 117, 775 (1926).Google Scholar
93.Yin, W-J., Wei, S-H., Al-Jassim, M.M., and Yan, Y.: Prediction of the chemical trends of oxygen vacancy levels in binary metal oxides. Appl. Phys. Lett. 99(14), 142109 (2011).Google Scholar
94.Martienssen, W. and Warlimont, H.: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).CrossRefGoogle Scholar
95.Gil, B., Lusson, A., Sallet, V., Said-Hassani, S-A., Triboulet, R., and Bigenwald, P.: Strain-fields effects and reversal of the nature of the fundamental valence band of ZnO epilayers. Jpn. J. Appl. Phys., Part 2 40(10B), L1089L1092 (2001).Google Scholar
96.Oshikiri, M., Imanaka, Y., Aryasetiawan, F., and Kido, G.: Comparison of the electron effective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first-principle theory. Physica B 298(1–4), 472476 (2001).CrossRefGoogle Scholar
97.Dou, Y., Egdell, R.G., Law, D.S.L., Harrison, N.M., and Searle, B.G.: An experimental and theoretical investigation of the electronic structure of CdO. J. Phys. Condens. Matter 10(38), 84478458 (1998).Google Scholar
98.Jefferson, P.H., Hatfield, S.A., Veal, T.D., King, P.D.C., McConville, C.F., Zúñiga-Pérez, J., and Muñoz-Sanjosé, V.: Band gap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92(2), 022101 (2008).Google Scholar
99.Fröhlich, D., Kenklies, R., and Helbig, R.: Band-gap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 41, 17501751 (1978).CrossRefGoogle Scholar
100.Button, K.J., Fonstad, C.G., and Dreybrodt, W.: Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance. Phys. Rev. B 4, 45394542 (1971).Google Scholar
101.Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., and Hosono, H.: p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93(3), 032113 (2008).Google Scholar
102.Jarzebski, Z.M.: Preparation and physical properties of transparent conducting oxide films. Phys. Status Solidi A 71(1), 1341 (1982).Google Scholar
103.Powell, R.J. and Derbenwick, G.F.: Vacuum ultraviolet radiation effects in SiO2. IEEE Trans. Nucl. Sci. 18(6), 99105 (1971).Google Scholar
104.Chanana, R.K.; Determination of hole effective mass in SiO2 and SiC conduction band offset using Fowler-Nordheim tunneling characteristics across metal-oxide-semiconductor structures after applying oxide field corrections. J. Appl. Phys. 109(10), 104508 (2011).Google Scholar
105.King, P.D.C., Veal, T.D., Schleife, A., Zúñiga-Pérez, J., Martel, B., Jefferson, P.H., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., and McConville, C.F.: Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasiparticle-corrected density-functional theory calculations. Phys. Rev. B 79(20), 205205 (2009).Google Scholar
106.Piper, L.F.J., DeMasi, A., Smith, K.E., Schleife, A., Fuchs, F., Bechstedt, F., Zúñiga-Pérez, J., and Muñoz-Sanjosé, V.: Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations. Phys. Rev. B 77(12), 125204 (2008).CrossRefGoogle Scholar
107.Preston, A.R.H., Ruck, B.J., Piper, L.F.J., DeMasi, A., Smith, K.E., Schleife, A., Fuchs, F., Bechstedt, F., Chai, J., and Durbin, S.M.: Band structure of ZnO from resonant x-ray emission spectroscopy. Phys. Rev. B 78(15), 155114 (2008).Google Scholar
108.Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., and Bechstedt, F.: Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94(1), 012104 (2009).Google Scholar
109.Höffling, B., Schleife, A., Fuchs, F., Rödl, C., and Bechstedt, F.: Band lineup between silicon and transparent conducting oxides. Appl. Phys. Lett. 97(3), 032116 (2010).CrossRefGoogle Scholar
110.de Carvalho, L.C., Schleife, A., Fuchs, F., and Bechstedt, F.: Valence-band splittings in cubic and hexagonal AlN, GaN, and InN. Appl. Phys. Lett. 97(23), 232101 (2010).Google Scholar
111.Kioupakis, E., Rinke, P., Schleife, A., Bechstedt, F., and Van de Walle, C.G.: Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81(24), 241201 (2010).Google Scholar
112.de Carvalho, L.C., Schleife, A., and Bechstedt, F.: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84, 195105 (2011).Google Scholar
113.Belabbes, A., de Carvalho, L.C., Schleife, A., and Bechstedt, F.: Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B 84, 125108 (2011).Google Scholar
114.de Carvalho, L.C., Schleife, A., Furthmüller, J., and Bechstedt, F.: Distribution of cations in wurtzitic InxGa1−xN and InxAl1−xN alloys: Consequences for energetics and quasiparticle electronic structures. Phys. Rev. B 85, 115121 (2012).CrossRefGoogle Scholar
115.Bortz, M.L., French, R.H., Jones, D.J., Kasowski, R.V., and Ohuchi, F.S.: Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys. Scr. 41(4), 537541 (1990).CrossRefGoogle Scholar
116.Wang, N-P., Rohlfing, M., Krüger, P., and Pollmann, J.: Electronic excitations of CO adsorbed on MgO(001). Appl. Phys. A 78(2), 213221 (2004).Google Scholar
117.Laskowski, R. and Christensen, N.E.: Ab initio calculation of excitons in ZnO. Phys. Rev. B 73(4), 045201 (2006).Google Scholar
118.Gori, P., Rakel, M., Cobet, C., Richter, W., Esser, N., Hoffmann, A., Del Sole, R., Cricenti, A., and Pulci, O.: Optical spectra of ZnO in the far ultraviolet: First-principles calculations and ellipsometric measurements. Phys. Rev. B 81, 125207 (2010).CrossRefGoogle Scholar
119.Riefer, A., Fuchs, F., Rödl, C., Schleife, A., Bechstedt, F., and Goldhahn, R.: Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs. Phys. Rev. B 84, 075218 (2011).CrossRefGoogle Scholar