Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T06:19:21.607Z Has data issue: false hasContentIssue false

Additively manufactured copper matrix composites: Heterogeneous microstructures and combined strengthening effects

Published online by Cambridge University Press:  27 April 2020

Heng Ouyang
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Ge Wang
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Zan Li*
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Qiang Guo*
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
*
a)Address all correspondence to these authors. e-mail: njulizan@sjtu.edu.cn
Get access

Abstract

We here design and fabricate a new kind of copper matrix composites, where titanium carbide nanoparticles are in situ incorporated into and embedded within the copper matrix, by virtue of laser powder-bed-fusion (L-PBF) process. We made a multiscale examination on the microstructures of the additively manufactured samples, unraveling that there are many unusual microstructural features, including grain refinement, the existence of high-density dislocations, and supersaturation of titanium solute atoms in the as-printed metal matrix composites. These unique microstructural features are mainly interpreted by the intense thermal history and the rapid solidification nature of the L-PBF process. The resultant composites then integrate the most important four strengthening mechanisms in metals: grain boundary strengthening, dislocation strengthening, solid solution strengthening, and second-phase strengthening, rendering this new kind of copper matrix composites a remarkably high yield strength (~490 MPa) and large uniform elongation (~12%), surpassing many high-performance copper matrix composites and copper alloys.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ibrahim, I.A., Mohamed, F.A., and Lavernia, E.J.: Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 26, 11371156 (1991).CrossRefGoogle Scholar
Miracle, D.B.: Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 65, 25262540 (2005).CrossRefGoogle Scholar
Tjong, S.C. and Ma, Z.Y.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep. 29, 49113 (2000).CrossRefGoogle Scholar
Mortensen, A. and Llorca, J.: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243270 (2010).CrossRefGoogle Scholar
Cha, S.I., Kim, K.T., Arshad, S.N., Mo, C.B., and Hong, S.H.: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 13771381 (2005).CrossRefGoogle Scholar
Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H., and Jeon, S.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 67246729 (2013).CrossRefGoogle ScholarPubMed
Lin, J., Li, Z., Fan, G., Cao, L., and Zhang, D.: The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50, 19931998 (2012).Google Scholar
Li, Z., Guo, Q., Li, Z., Fan, G., Xiong, D.B., Su, Y., Zhang, J., and Zhang, D.: Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15, 80778083 (2015).CrossRefGoogle ScholarPubMed
Li, Z., Wang, H., Guo, Q., Li, Z., Xiong, D.B., Su, Y., Gao, H., Li, X., and Zhang, D.: Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries. Nano Lett. 18, 62556264 (2018).CrossRefGoogle ScholarPubMed
Chen, L.Y., Xu, J.Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.M., Mathaudhu, S., and Li, X.C.: Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528, 539543 (2015).CrossRefGoogle ScholarPubMed
Liu, Z., Han, Q., and Li, J.: Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites. Compos. B Eng. 42, 20802084 (2011).CrossRefGoogle Scholar
Nukami, T. and Flemings, M.C.: In situ synthesis of TiC particulate-reinforced aluminum matrix composites. Metall. Mater. Trans. A 26, 18771884 (1995).CrossRefGoogle Scholar
Herzog, D., Seyda, V., Wycisk, E., and Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371392 (2016).CrossRefGoogle Scholar
Frazier, W.E.: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 19171928 (2014).CrossRefGoogle Scholar
Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R., and Wicker, R.B.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 114 (2012).CrossRefGoogle Scholar
Wang, Y.M., Voisin, T., Mckeown, J.T., Ye, J., Calta, N.P., Li, Z., Zeng, Z., Zhang, Y., Chen, W., Roehling, T.T., Ott, R.T., Santala, M.K., Depond, P.J., Matthews, M.J., Hamza, A.V., and Zhu, T.: Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17, 6371 (2018).CrossRefGoogle ScholarPubMed
Li, Z., Voisin, T., McKeown, J.T., Ye, J., Braun, T., Kamath, C., King, W.E., and Wang, Y.M.: Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. Int. J. Plast. 120, 395410 (2019).CrossRefGoogle Scholar
Li, W., Li, S., Liu, J., Zhang, A., Zhou, Y., Wei, Q., Yan, C., and Shi, Y.: Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties, and fracture mechanism. Mater. Sci. Eng., A 663, 116125 (2016).CrossRefGoogle Scholar
Gussev, M.N. and Leonard, K.J.: In situ SEM–EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel. J. Nucl. Mater. 517, 4556 (2019).CrossRefGoogle Scholar
Loh, G.H., Pei, E., Harrison, D., and Monzón, M.D.: An overview of functionally graded additive manufacturing. Addit. Manuf. 23, 3444 (2018).Google Scholar
Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungar, T., Wang, Y.M., Ma, E., and Valiev, R.Z.: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 19081917 (2003).CrossRefGoogle Scholar
Zhang, D., Qiu, D., Gibson, M.A., Zheng, Y., Fraser, H.L., StJohn, D.H., and Easton, M.A.: Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 9195 (2019).CrossRefGoogle ScholarPubMed
Kikuchi, M., Takada, Y., Kiyosue, S., Yoda, M., Woldu, M., Cai, Z., Okuno, O., and Okabe, T.: Mechanical properties and microstructures of cast Ti–Cu alloys. Dent. Mater. J. 19, 174181 (2003).CrossRefGoogle ScholarPubMed
Barmouz, M. and Givi, M.K.B.: Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical, and electrical behavior. Compos. Appl. Sci. Manuf. 42, 14451453 (2011).CrossRefGoogle Scholar
Ferkel, H.: Properties of copper reinforced by laser-generated Al2O3-nanoparticles. Nanostruct. Mater. 11, 595602 (1999).CrossRefGoogle Scholar
Batra, I.S., Dey, G.K., Kulkarni, U.D., and Banerjee, S.: Microstructure and properties of a Cu–Cr–Zr alloy. J. Nucl. Mater. 299, 91100 (2001).CrossRefGoogle Scholar
Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., and Du, Z.Z.: Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing. Mater. Sci. Eng., A 459, 303308 (2007).CrossRefGoogle Scholar
Wang, W., Kang, H., Chen, Z., Chen, Z., Zou, C., Li, R., Yin, G., and Wang, T.: Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater. Sci. Eng., A 673, 378390 (2016).CrossRefGoogle Scholar
Gholami, M., Vesely, J., Altenberger, I., Kuhn, H.A., Janecek, M., Wollmann, M., and Wagner, L.: Effect of microstructure on mechanical properties of CuNiSi alloys. J. Alloys Compd. 696, 201212 (2017).CrossRefGoogle Scholar
Zhang, Z.J., Duan, Q.Q., An, X.H., Wu, S.D., Yang, G., and Zhang, Z.F.: Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing. Mater. Sci. Eng., A 528, 42594267 (2011).CrossRefGoogle Scholar
Zhang, P., An, X.H., Zhang, Z.J., Wu, S.D., Li, S.X., Zhang, Z.F., Figueiredo, R.B., Gao, N., and Langdon, T.G.: Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scripta Mater. 67, 871874 (2012).CrossRefGoogle Scholar